We previously showed that nanoparticles (NPs) could be ordered into structures by using the growth rate of polymer crystals as the control variable. In particular, for slow enough spherulitic growth fronts, the NPs grafted with amorphous polymer chains are selectively moved into the interlamellar, interfibrillar, and interspherulitic zones of a lamellar morphology, specifically going from interlamellar to interspherulitic with progressively decreasing crystal growth rates. Here, we examine the effect of NP polymer grafting density on crystallization kinetics. We find that while crystal nucleation is practically unaffected by the presence of the NPs, spherulitic growth, final crystallinity, and melting point values decrease uniformly as the volume fraction of the crystallizable polymer, poly(ethylene oxide) or PEO, ϕPEO, decreases. A surprising aspect here is that these results are apparently unaffected by variations in the relative amounts of the amorphous polymer graft and silica NPs at constant ϕ, implying that chemical details of the amorphous defect apparently only play a secondary role. We therefore propose that the grafted NPs in this size range only provide geometrical confinement effects which serve to set the crystal growth rates and melting point depressions without causing any changes to crystallization mechanisms.
It has recently been established that polymer crystallization can preferentially place nanoparticles (NPs) into the amorphous domains of a lamellar semicrystalline morphology. The phenomenology of this process is clear: when the time for NP diffusion is shorter than the crystal growth time, then the NPs are rejected by the growing crystals and placed in the amorphous domains. However, since there is no quantitative characterization of this ordered NP state, we develop a correlation function analysis for small-angle X-ray scattering data, inspired by classical methods used for enunciating the local morphology of lamellar semicrystalline polymers. We show that when the spherulitic growth rate is slower than NP diffusion, then all the NPs are expelled from the crystals. As we increase the crystallization temperature, T c, the long period characterizing the periodically repeating crystal–amorphous polymer structure, r cc, increases. This results in a smaller number of amorphous domains per unit volumethe number of NPs per amorphous domain thus increases. While the scattering contrast between the pure silica and the polymer is constant, these arguments predict that the apparent contrast between the NP-rich and the polymer-rich domains scale linearly with r cc, as we confirm from our experiments. These facts allow us to posit that the NPs become more efficiently packed in the interlamellar zone with increasing T c until they form a fully filled monolayer. Above this temperature, NP multilayers form within each of the NP-rich domains. Our analysis approach, therefore, describes NP ordering that is achieved when driven by polymer crystallization.
The following work describes the development of a novel noninvasive transmucosal drug delivery system, the chitosan sponge matrix (CSM). It is composed of cationic chitosan (CS) nanoparticles (NPs) that encapsulate cisplatin (CDDP) embedded within a polymeric mucoadhesive CS matrix. CSM is designed to swell up when exposed to moisture, facilitating release of the NPs via diffusion across the matrix. CSM is intended to be administered topically and locally to mucosal tissues, with its initial indication being oral cancer (OC). Currently, intravenous (IV) administered CDDP is the gold standard chemotherapeutic agent used in the treatment of OC. However, its clinical use has been limited by its renal and hemotoxicity profile. We aim to locally administer CDDP via encapsulation in CS NPs and deliver them directly to the oral cavity with CSM. It is hypothesized that such a delivery device will greatly reduce any systemic toxicity and increase antitumor efficacy. This paper describes the methods for developing CSM and maintaining the integrity of CDDP NPs embedded in the CSM.
Zone annealing, a directional crystallization technique originally used for the purification of semiconductors, is applied here to crystalline polymers. Tight control over the final lamellar orientation and thickness of semicrystalline polymers can be obtained by directionally solidifying the material under optimal conditions. It has previously been postulated by Lovinger and Gryte that, at steady state, the crystal growth rate of a polymer undergoing zone annealing is equal to the velocity at which the sample is drawn through the temperature gradient. These researchers further implied that directional crystallization only occurs below a critical velocity, when crystal growth rate dominates over nucleation. Here, we perform an analysis of small-angle X-ray scattering, differential scanning calorimetry, and cross-polarized optical microscopy of zone-annealed poly(ethylene oxide) to examine these conjectures. Our long period data validate the steady-state ansatz, while an analysis of Herman’s orientation function confirms the existence of a transitional region around a critical velocity, v crit , where there is a coexistence of oriented and isotropic domains. Below v crit , directional crystallization is achieved, while above v crit , the mechanism more closely resembles that of conventional isotropic isothermal crystallization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.