We present a summary of our recent results on the electrical and mechanical properties of fibers made from poly(2,5-dimethoxy-p-phenylene vinylene), PDMPV and poly(2,5-thienylene vinylene), PTV, using the precursor polymer methodology, and from polyaniline, PANI, using the method of processing as polyblends with poly-@-phenylene terephthalamide), PPTA, from sulfuric acid. The solubility of both PANI and PFTA in H2S04 presents a unique opportunity for co-dissolving and blending PANI and PPTA to exploit the excellent mechanical properties of PPTA and the electrical conductivity of PANI; we summarize the electrical and mechanical properties of such composite fibers. For PDMPV and PTV fibers, we find a strong correlation between the conductivity and the tensile strength (and/or modulus), and we show from basic theoretical concepts that this relationship is an intrinsic feature of conducting polymers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.