The receptor-ligand pairs CD28-B7 and CD40-gp39 are essential for the initiation and amplification of T-cell-dependent immune responses. CD28-B7 interactions provide 'second signals' necessary for optimal T-cell activation and IL-2 production, whereas CD40-gp39 signals co-stimulate B-cell, macrophage, endothelial cell and T-cell activation. Nonetheless, blockade of either of these pathways alone is not sufficient to permit engraftment of highly immunogenic allografts. Here we report that simultaneous but not independent blockade of the CD28 and CD40 pathways effectively aborts T-cell clonal expansion in vitro and in vivo, promotes long-term survival of fully allogeneic skin grafts, and inhibits the development of chronic vascular rejection of primarily vascularized cardiac allografts. The requirement for simultaneous blockade of these pathways for effective inhibition of alloimmunity indicates that, although they are interrelated, the CD28 and CD40 pathways are critical independent regulators of T-cell-dependent immune responses.
The 4-1BB glycoprotein is a member of the tumor necrosis factor receptor superfamily and binds to a high-affinity ligand (4-1BBL) expressed on several antigen-presenting cells such as macrophages and activated B cells. Expression of 4-1BB is restricted to primed CD4+ and CD8+ T cells, and 4-1BB signaling either by binding to 4-1BBL or by antibody ligation delivers a dual mitogenic signal for T-cell activation and growth. These observations suggest an important role for 4-1BB in the amplification of T cell-mediated immune responses. We now show that administration of anti-4-1BB monoclonal antibodies can eradicate established large tumors in mice, including the poorly immunogenic Ag104A sarcoma and the highly tumorigenic P815 masto cytoma. The immune response induced by anti-4- 1BB monoclonal antibodies is mediated by both CD8+ and CD4+ T cells and is accompanied by a marked augmentation of tumor-selective cytolytic T-cell activity. Our data suggest that a similar approach may be efficacious for immunotherapy of human cancer.
The 4-1BB receptor is an inducible type I membrane protein and member of the tumor necrosis factor receptor (TNFR) superfamily that is rapidly expressed on the surface of CD4+ and CD8+ T cells after antigen- or mitogen-induced activation. Cross-linking of 4-1BB and the T cell receptor (TCR) on activated T cells has been shown to deliver a costimulatory signal to T cells. Here, we expand upon previously published studies by demonstrating that CD8+ T cells when compared with CD4+ T cells are preferentially responsive to both early activation events and proliferative signals provided via the TCR and 4-1BB. In comparison, CD28-mediated costimulatory signals appear to function in a reciprocal manner to those induced through 4-1BB costimulation. In vivo examination of the effects of anti-4-1BB monoclonal antibodies (mAbs) on antigen-induced T cell activation have shown that the administration of epitope-specific anti-4-1BB mAbs amplified the generation of H-2d–specific cytotoxic T cells in a murine model of acute graft versus host disease (GVHD) and enhanced the rapidity of cardiac allograft or skin transplant rejection in mice. Cytokine analysis of in vitro activated CD4+ and CD8+ T cells revealed that anti-4-1BB costimulation markedly enhanced interferon-γ production by CD8+ T cells and that anti-4-1BB mediated proliferation of CD8+ T cells appears to be IL-2 independent. The results of these studies suggest that regulatory signals delivered by the 4-1BB receptor play an important role in the regulation of cytotoxic T cells in cellular immune responses to antigen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.