Cancer cells have increased glycolysis and glutaminolysis. Their third feature is increased de novo lipogenesis. As such, fatty acid (FA) synthesis enzymes are over-expressed in cancer and their depletion causes antitumor effects. As fatty acid synthase (FASN) plays a pivotal role in this process, it is an attractive target for cancer therapy. Areas covered: This is a review of the lipogenic phenotype of cancer and how this phenomenon can be exploited for cancer therapy using inhibitors of FASN, with particular emphasis on orlistat as a repurposing drug. Expert opinion: Disease stabilization only has been observed with a highly selective FASN inhibitor used as a single agent in clinical trials. It is too early to say whether the absence of tumor responses other than stabilization results because even full inhibition of FASN is not enough to elicit antitumor responses. The FASN inhibitor orlistat is a 'dirty' drug with target-off actions upon at least seven targets with a proven role in tumor biology. The development of orlistat formulations suited for its intravenous administration is a step ahead to shed light on the concept that drug promiscuity can or not be a virtue.
Valproic acid (VPA) is widely recognized for its use in the control of epilepsy and other neurological disorders in the past 50 years. Recent evidence has shown the potential of VPA in the control of certain cancers, owed in part to its role in modulating epigenetic changes through the inhibition of histone deacetylases, affecting the expression of genes involved in the cell cycle, differentiation, and apoptosis. The direct impact of VPA in cells of the immune system has only been explored recently. In this review, we discuss the effects of VPA in the suppression of some activation mechanisms in several immune cells that lead to an anti-inflammatory response. As expected, immune cells are not exempt from the effect of VPA, as it also affects the expression of genes of the cell cycle and apoptosis through epigenetic modifications. In addition to inhibiting histone deacetylases, VPA promotes RNA interference, activates histone methyltransferases, or represses the activation of transcription factors. However, during the infectious process, the effectiveness of VPA is subject to the biological nature of the pathogen and the associated immune response; this is because VPA can promote the control or the progression of the infection. Due to its various effects, VPA is a promising alternative for the control of autoimmune diseases and hypersensitivity and needs to be further explored.
ObjectiveObesity is associated with metabolic abnormalities, including insulin resistance and dyslipidemias. Previous studies demonstrated that genistein intake modifies the gut microbiota in mice by selectively increasing Akkermansia muciniphila, leading to reduction of metabolic endotoxemia and insulin sensitivity. However, it is not known whether the consumption of genistein in humans with obesity could modify the gut microbiota reducing the metabolic endotoxemia and insulin sensitivity.Research design and methods45 participants with a Homeostatic Model Assessment (HOMA) index greater than 2.5 and body mass indices of ≥30 and≤40 kg/m2 were studied. Patients were randomly distributed to consume (1) placebo treatment or (2) genistein capsules (50 mg/day) for 2 months. Blood samples were taken to evaluate glucose concentration, lipid profile and serum insulin. Insulin resistance was determined by means of the HOMA for insulin resistance (HOMA-IR) index and by an oral glucose tolerance test. After 2 months, the same variables were assessed including a serum metabolomic analysis, gut microbiota, and a skeletal muscle biopsy was obtained to study the gene expression of fatty acid oxidation.ResultsIn the present study, we show that the consumption of genistein for 2 months reduced insulin resistance in subjects with obesity, accompanied by a modification of the gut microbiota taxonomy, particularly by an increase in the Verrucomicrobia phylum. In addition, subjects showed a reduction in metabolic endotoxemia and an increase in 5′-adenosine monophosphate-activated protein kinase phosphorylation and expression of genes involved in fatty acid oxidation in skeletal muscle. As a result, there was an increase in circulating metabolites of β-oxidation and ω-oxidation, acyl-carnitines and ketone bodies.ConclusionsChange in the gut microbiota was accompanied by an improvement in insulin resistance and an increase in skeletal muscle fatty acid oxidation. Therefore, genistein could be used as a part of dietary strategies to control the abnormalities associated with obesity, particularly insulin resistance; however, long-term studies are needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.