With confirmed coronavirus disease 2019 (COVID-19) cases surpassing the 18 million mark around the globe, there is an imperative need to gain comprehensive understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Although the main clinical manifestations of COVID-19 are associated with respiratory or intestinal symptoms, reports of neurological signs and symptoms are increasing. The etiology of these neurological manifestations remains obscure, and probably involves several direct pathways, not excluding the direct entry of the virus to the central nervous system (CNS) through the olfactory epithelium, circumventricular organs, or disrupted blood–brain barrier. Furthermore, neuroinflammation might occur in response to the strong systemic cytokine storm described for COVID-19, or due to dysregulation of the CNS rennin-angiotensin system. Descriptions of neurological manifestations in patients in the previous coronavirus (CoV) outbreaks have been numerous for the SARS-CoV and lesser for Middle East respiratory syndrome coronavirus (MERS-CoV). Strong evidence from patients and experimental models suggests that some human variants of CoV have the ability to reach the CNS and that neurons, astrocytes, and/or microglia can be target cells for CoV. A growing body of evidence shows that astrocytes and microglia have a major role in neuroinflammation, responding to local CNS inflammation and/or to disbalanced peripheral inflammation. This is another potential mechanism for SARS-CoV-2 damage to the CNS. In this comprehensive review, we will summarize the known neurological manifestations of SARS-CoV-2, SARS-CoV and MERS-CoV; explore the potential role for astrocytes and microglia in the infection and neuroinflammation; and compare them with the previously described human and animal CoV that showed neurotropism to propose possible underlying mechanisms.
J. Neurochem. (2010) 112, 854–869. Abstract Sleep apnea (SA) can be effectively managed in humans but it is recognized that when left untreated, SA causes long‐lasting changes in neuronal circuitry in the brain. Recent neuroimaging studies gave suggested that these neuronal changes are also present even in patients successfully treated for the acute effects of SA. The cellular mechanisms that account for these changes are not certain but animal models of intermittent hypoxia (IH) during sleep have shown neuronal death and impairment in learning and memory. Reactive gliosis has a drastic effect on neuronal survival and circuitry and in this study we examined the neuro‐glial response in brain areas affected by SA. Glial and neuronal alterations were analyzed after 1, 3, 5 and 10 days of exposure to IH (8 h/day during the sleep phase, cycles of 6 min each, 10–21% O2) and observed significant astroglial hyperplasia and hypertrophy in parietal brain cortex and hippocampus by studying gliofibrillary acidic protein, Vimentin, S100B and proliferating cell nuclear antigen expression. In addition, altered morphology, reduced dendrite branching and caspase activation were observed in the CA‐1 hippocampal and cortical (layers IV–V) pyramidal neurons at short exposure times (1–3 days). Surprisingly, longer exposure to IH reduced the neuronal death rate and increased neuronal branching in the presence of persistent reactive gliosis. Up‐regulation of hypoxia inducible factor 1 alpha (HIF‐1α) and mdr‐1, a HIF‐1α target gene, were observed and increased expression of receptor for advanced end glycated products and its binding partner S100B were also noted. Our results show that a low number of hypoxic cycles induce reactive gliosis and neuronal death whereas continuous exposure to IH cycles reduced the rate of neuronal death and induced neuronal branching on surviving neurons. We hypothesize that HIF‐1α and S100B glial factor may improve neuronal survival under hypoxic conditions and propose that the death/survival/re‐growth process observed here may underlie brain circuitry changes in humans with SA.
S100B is a soluble protein secreted by astrocytes that exerts pro-survival or pro-apoptotic effects depending on the concentration reached in the extracellular millieu. The S100B receptor termed RAGE (for receptor for advanced end glycation products) is highly expressed in the developing brain but is undetectable in normal adult brain. In this study, we show that RAGE expression is induced in cortical neurons of the ischemic penumbra. Increased RAGE expression was also observed in primary cortical neurons exposed to excitotoxic glutamate (EG). S100B exerts effects on survival pathways and neurite extension when the cortical neurons have been previously exposed to EG and these S100B effects were prevented by anti-RAGE blocking antibodies. Furthermore, nuclear factor kappa B (NF-jB) is activated by S100B in a dose-and RAGE-dependent manner and neuronal death induced by NF-jB inhibition was prevented by S100B that restored NF-jB activation levels. Together, these findings suggest that excitotoxic damage can induce RAGE expression in neurons from ischemic penumbra and demonstrate that cortical neurons respond to S100B through engagement of RAGE followed by activation of NF-jB signaling. In addition, basal NF-jB activity in neurons is crucial to modulate the extent of pro-survival or pro-death S100B effects.
Cortical development is controlled by transcriptional programs, which are orchestrated by transcription factors. Yet, stable inheritance of spatio-temporal activity of factors influencing cell fate and localization in different layers is only partly understood. Here we find that deletion of Dot1l in the murine telencephalon leads to cortical layering defects, indicating DOT1L activity and chromatin methylation at H3K79 impact on the cell cycle, and influence transcriptional programs conferring upper layer identity in early progenitors. Specifically, DOT1L prevents premature differentiation by increasing expression of genes that regulate asymmetric cell division (Vangl2, Cenpj). Loss of DOT1L results in reduced numbers of progenitors expressing genes including SoxB1 gene family members. Loss of DOT1L also leads to altered cortical distribution of deep layer neurons that express either TBR1, CTIP2 or SOX5, and less activation of transcriptional programs that are characteristic for upper layer neurons (Satb2, Pou3f3, Cux2, SoxC family members). Data from three different mouse models suggest that DOT1L balances transcriptional programs necessary for proper neuronal composition and distribution in the six cortical layers. Furthermore, because loss of DOT1L in the pre-neurogenic phase of development impairs specifically generation of SATB2-expressing upper layer neurons, our data suggest that DOT1L primes upper layer identity in cortical progenitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.