This research investigated the effects of different thermoplastics types and different kinds of straw on selected properties of polymer-straw boards. Polyethylene, polyethylene, and polystyrene of virgin and of recycled origin were used for bonding the boards. Three kinds of straw were used: rape (Brassica napus L. var. napus), triticale (Triticosecale Witt b m.), and rye (Secale L.). Five-layer polymer-straw boards were produced. The obtained boards differed in both the materials they were made of and the moisture content (7, 25, and 2% for the core, the middle, and the face layers, respectively), and 30% of straw particles were substituted with thermoplastics added to the face layers. It was found that properties of polymer-straw boards strongly depend on both the kind of straw and the type of polymer used. The best mechanical properties were obtained for rye straw and polystyrene or recycled polymers, whereas the best hydrophobic properties were observed for rape straw combined with recycled polyethylene or polypropylene. Although recycled polymers improved the hydrophobic properties of the boards, they impaired their mechanical properties in comparison with the reference ones. However, in terms of bending strength, they still met the requirements for heavy duty load-bearing boards for use in humid conditions (20 MPa for P7 boards according to EN 312).
This study examined the manufacture of flat-pressed wood plastic composites (WPC) using rape chips glued with polymeric diphenylmethane diisocyanate (pMDI). Manufactured boards were of 5-ply type, with 30% polyethylene (PE) content in individual layers. The following properties were assessed: modulus of rupture (MOR); modulus of elasticity (MOE); internal bonding strength (IB); thickness swelling (TS) after 24 hours; water absorption (WA); and noise reduction effectiveness. The tests revealed better physical and mechanical properties of polymer-particle boards than similar polymer and rape boards. It was also demonstrated that a change in mechanical properties of polymer and lignin-cellulose boards is strongly associated with polymer location in individual board layers, and that greater porosity of wood material ensures better polymer anchoring in its structure, when compared with rape straw particles.
This study investigated the mechanical, physical, and thermal properties of three-layer particleboards produced from annual plant straws and three polymers: polypropylene (PP), high-density polyethylene (HDPE), and polylactic acid (PLA). The rape straw (Brassica napus L. var. Napus) was used as an internal layer, while rye (Secale L.) or triticale (Triticosecale Witt.) was applied as an external layer in the obtained particleboards. The boards were tested for their density, thickness swelling, static bending strength, modulus of elasticity, and thermal degradation characteristics. Moreover, the changes in the structure of composites were determined by infrared spectroscopy. Among the straw-based boards with the addition of tested polymers, satisfactory properties were obtained mainly using HDPE. In turn, the straw-based composites with PP were characterized by moderate properties, while PLA-containing boards did not show clearly favorable properties either in terms of the mechanical or physical features. The properties of straw–polymer boards produced based on triticale straw were slightly better than those of the rye-based boards, probably due to the geometry of the strands, which was more favorable for triticale straw. The obtained results indicated that annual plant fibers, mainly triticale, can be used as wood substitutes for the production of biocomposites. Moreover, the addition of polymers allows for the use of the obtained boards in conditions of increased humidity.
The aim of this study was to determine basic anatomical features of annual plant fibers used as wood substitutes for the production of wood-based panels. For this purpose rye, wheat, triticale, rape and corn straw were used. The determination of the morphological features of the fibers was conducted on the macerated material. Fiber lengths, fiber diameters and lumens were measured, and then the fiber wall thicknesses and slenderness ratios were calculated. The result clearly showed significant differences among all fiber characteristics of the tested plants. The strength and direction of the relationship between the anatomical properties determined in the study and the physicomechanical properties of the boards produced with straw from the tested annual plants were identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.