Recently, the emergence of the three-dimensional (3D) exoscope has proven to be a viable alternative to the operative microscope (OM) as a novel workhorse of microneurosurgical procedures. Through its current iteration, the 3D exoscope has been demonstrated to be at least equivalent to the operative microscope in terms of surgical outcomes in many settings. With its superior ergonomics and simplicity of use, the 3D exoscope has been shown in multiple studies to be a powerful visualizing tool during surgical procedures. Moreover, the exoscopic systems, through their current iterations and by means of a high-resolution 3D monitor and 3D glasses, have allowed all participants present in the operative room to attain an unprecedented level of intraoperative visualization of anatomical structures and surgical maneuvers which are traditionally available only to the first operator. Although long-term data are still lacking regarding its future as a replacement of the OM, the 3D exoscope has revealed itself as an intense subject of discussion in neurosurgery regarding its implication for surgical education, especially for residents and junior neurosurgeons. This article is a review of the current state of the literature on the role of the exoscope in surgical education, underlining its strength as a learning tool and its potential future implications in terms of surgical education.
Despite the efforts made in recent decades, glioblastoma is still the deadliest primary brain cancer without cure. The potential role in tumour maintenance and progression of the peritumoural brain zone (PBZ), the apparently normal area surrounding the tumour, has emerged. Little is known about this area due to a lack of common definition and due to difficult sampling related to the functional role of peritumoural healthy brain. The aim of this work was to better characterize the PBZ and to identify genes that may have role in its malignant transformation. Starting from our previous study on the comparison of the genomic profiles of matched tumour core and PBZ biopsies, we selected CDK4 and EXT2 as putative malignant drivers of PBZ. The gene expression analysis confirmed their over-expression in PBZ, similarly to what happens in low-grade glioma and glioblastoma, and CDK4 high levels seem to negatively influence patient overall survival. The prognostic role of CDK4 and EXT2 was further confirmed by analysing the TCGA cohort and bioinformatics prediction on their gene networks and protein–protein interactions. These preliminary data constitute a good premise for future investigations on the possible role of CDK4 and EXT2 in the malignant transformation of PBZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.