Heterogeneities in contact networks have a major effect in determining whether a pathogen can become epidemic or persist at endemic levels. Epidemic models that determine which interventions can successfully prevent an outbreak need to account for social structure and mixing patterns. Contact patterns vary across age and locations (e.g. home, work, and school), and including them as predictors in transmission dynamic models of pathogens that spread socially will improve the models’ realism. Data from population-based contact diaries in eight European countries from the POLYMOD study were projected to 144 other countries using a Bayesian hierarchical model that estimated the proclivity of age-and-location-specific contact patterns for the countries, using Markov chain Monte Carlo simulation. Household level data from the Demographic and Health Surveys for nine lower-income countries and socio-demographic factors from several on-line databases for 152 countries were used to quantify similarity of countries to estimate contact patterns in the home, work, school and other locations for countries for which no contact data are available, accounting for demographic structure, household structure where known, and a variety of metrics including workforce participation and school enrolment. Contacts are highly assortative with age across all countries considered, but pronounced regional differences in the age-specific contacts at home were noticeable, with more inter-generational contacts in Asian countries than in other settings. Moreover, there were variations in contact patterns by location, with work-place contacts being least assortative. These variations led to differences in the effect of social distancing measures in an age structured epidemic model. Contacts have an important role in transmission dynamic models that use contact rates to characterize the spread of contact-transmissible diseases. This study provides estimates of mixing patterns for societies for which contact data such as POLYMOD are not yet available.
Background Since the coronavirus disease 2019 outbreak began in the Chinese city of Wuhan on Dec 31, 2019, 68 imported cases and 175 locally acquired infections have been reported in Singapore. We aimed to investigate options for early intervention in Singapore should local containment (eg, preventing disease spread through contact tracing efforts) be unsuccessful. MethodsWe adapted an influenza epidemic simulation model to estimate the likelihood of human-to-human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a simulated Singaporean population. Using this model, we estimated the cumulative number of SARS-CoV-2 infections at 80 days, after detection of 100 cases of community transmission, under three infectivity scenarios (basic reproduction number [R 0 ] of 1•5, 2•0, or 2•5) and assuming 7·5% of infections are asymptomatic. We first ran the model assuming no intervention was in place (baseline scenario), and then assessed the effect of four intervention scenarios compared with a baseline scenario on the size and progression of the outbreak for each R 0 value. These scenarios included isolation measures for infected individuals and quarantining of family members (hereafter referred to as quarantine); quarantine plus school closure; quarantine plus workplace distancing; and quarantine, school closure, and workplace distancing (hereafter referred to as the combined intervention). We also did sensitivity analyses by altering the asymptomatic fraction of infections (22·7%, 30·0%, 40·0%, and 50·0%) to compare outbreak sizes under the same control measures.Findings For the baseline scenario, when R 0 was 1·5, the median cumulative number of infections at day 80 was 279 000 (IQR 245 000-320 000), corresponding to 7•4% (IQR 6·5-8·5) of the resident population of Singapore. The median number of infections increased with higher infectivity: 727 000 cases (670 000-776 000) when R 0 was 2·0, corresponding to 19•3% (17•8-20•6) of the Singaporean population, and 1 207 000 cases (1 164 000-1 249 000) when R 0 was 2·5, corresponding to 32% (30•9-33•1) of the Singaporean population. Compared with the baseline scenario, the combined intervention was the most effective, reducing the estimated median number of infections by 99•3% (IQR 92•6-99•9) when R 0 was 1·5, by 93·0% (81•5-99•7) when R 0 was 2·0, and by 78•2% (59·0 -94•4) when R 0 was 2·5. Assuming increasing asymptomatic fractions up to 50·0%, up to 277 000 infections were estimated to occur at day 80 with the combined intervention relative to 1800 for the baseline at R 0 of 1·5.Interpretation Implementing the combined intervention of quarantining infected individuals and their family members, workplace distancing, and school closure once community transmission has been detected could substantially reduce the number of SARS-CoV-2 infections. We therefore recommend immediate deployment of this strategy if local secondary transmission is confirmed within Singapore. However, quarantine and workplace distancing should be prioritised over school cl...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.