This paper introduces predefined-time stable dynamical systems which are a class of fixed-time stable dynamical systems with settling time as an explicit parameter that can be defined in advance. This concept allows for the design of observers and controllers for problems that require to fulfill hard time constraints. An example is encountered in the fault detection and isolation problem, where mode detection in a timely manner needs to be guaranteed in order to apply a recovery action. Furthermore, through the notion of strong predefined-time stability, the approach hereinafter presented permits to overcome the problem of overestimation of the convergence time bound encountered in previous methods for the analysis of finite-time stable systems, where the stabilization time is often an unbounded function of the initial conditions of the system. A Lyapunov analysis is provided together with a detailed discussion of the applications to consensus and first order sliding mode controller design. Finite-time stability, Sliding-mode control, Lyapunov stability, Robust control, Consensus.
This technical note studies Lyapunov-like conditions to ensure a class of dynamical systems to exhibit predefinedtime stability. The origin of a dynamical system is predefinedtime stable if it is fixed-time stable and an upper bound of the settling-time function can be arbitrarily chosen a priori through a suitable selection of the system parameters. We show that the studied Lyapunov-like conditions allow to demonstrate equivalence between previous Lyapunov theorems for predefinedtime stability for autonomous systems. Moreover, the obtained Lyapunov-like theorem is extended for analyzing the property of predefined-time ultimate boundedness with predefined bound, which is useful when analyzing uncertain dynamical systems. Therefore, the proposed results constitute a general framework for analyzing predefined-time stability, and they also unify a broad class of systems which present the predefined-time stability property. On the other hand, the proposed framework is used to design robust controllers for affine control systems, which induce predefined-time stability (predefined-time ultimate boundedness of the solutions) w.r.t. to some desired manifold. A simulation example is presented to show the behavior of a developed controller, especially regarding the settling time estimation.
This paper deals with adaptive tracking for discrete-time multiple-input-multiple-output (MIMO) nonlinear systems in presence of bounded disturbances. In this paper, a high-order neural network (HONN) structure is used to approximate a control law designed by the backstepping technique, applied to a block strict feedback form (BSFF). This paper also includes the respective stability analysis, on the basis of the Lyapunov approach, for the whole controlled system, including the extended Kalman filter (EKF)-based NN learning algorithm. Applicability of the scheme is illustrated via simulation for a discrete-time nonlinear model of an electric induction motor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.