Current methods of high-throughput molecular and genomic analyses enabled to reconstruct thousands of human molecular pathways. Knowledge of molecular pathways structure and architecture taken along with the gene expression data can help interrogating the pathway activation levels (PALs) using different bioinformatic algorithms. In turn, the pathway activation profiles can characterize molecular processes, which are differentially regulated and give numeric characteristics of the extent of their activation or inhibition. However, different pathway nodes may have different functions toward overall pathway regulation, and calculation of PAL requires knowledge of molecular function of every node in the pathway in terms of its activator or inhibitory role. Thus, high-throughput annotation of functional roles of pathway nodes is required for the comprehensive analysis of the pathway activation profiles. We proposed an algorithm that identifies functional roles of the pathway components and applied it to annotate 3,044 human molecular pathways extracted from the Biocarta, Reactome, KEGG, Qiagen Pathway Central, NCI, and HumanCYC databases and including 9,022 gene products. The resulting knowledgebase can be applied for the direct calculation of the PALs and establishing large scale profiles of the signaling, metabolic, and DNA repair pathway regulation using high throughput gene expression data. We also provide a bioinformatic tool for PAL data calculations using the current pathway knowledgebase.
Multiple myeloma (MM) affects ~500,000 people and results in ~100,000 deaths annually, being currently considered treatable but incurable. There are several MM chemotherapy treatment regimens, among which eleven include bortezomib, a proteasome-targeted drug. MM patients respond differently to bortezomib, and new prognostic biomarkers are needed to personalize treatments. However, there is a shortage of clinically annotated MM molecular data that could be used to establish novel molecular diagnostics. We report new RNA sequencing profiles for 53 MM patients annotated with responses on two similar chemotherapy regimens: bortezomib, doxorubicin, dexamethasone (PAD), and bortezomib, cyclophosphamide, dexamethasone (VCD), or with responses to their combinations. Fourteen patients received both PAD and VCD; six received only PAD, and 33 received only VCD. We compared profiles for the good and poor responders and found five genes commonly regulated here and in the previous datasets for other bortezomib regimens (all upregulated in the good responders): FGFR3, MAF, IGHA2, IGHV1-69, and GRB14. Four of these genes are linked with known immunoglobulin locus rearrangements. We then used five machine learning (ML) methods to build a classifier distinguishing good and poor responders for two cohorts: PAD + VCD (53 patients), and separately VCD (47 patients). We showed that the application of FloWPS dynamic data trimming was beneficial for all ML methods tested in both cohorts, and also in the previous MM bortezomib datasets. However, the ML models build for the different datasets did not allow cross-transferring, which can be due to different treatment regimens, experimental profiling methods, and MM heterogeneity.
Metal ion homeostasis is fundamental for life. Specifically, transition metals iron, manganese and zinc play a pivotal role in mitochondrial metabolism and energy generation, anti-oxidation defense, transcriptional regulation and the immune response. The misregulation of expression or mutations in ion carriers and the corresponding changes in Mn2+ and Zn2+ levels suggest that these ions play a pivotal role in cancer progression. Moreover, coordinated changes in Mn2+ and Zn2+ ion carriers have been detected, suggesting that particular mechanisms influenced by both ions might be required for the growth of cancer cells, metastasis and immune evasion. Here, we present a review of zinc and manganese pathophysiology suggesting that these ions might cooperatively regulate cancerogenesis. Zn and Mn effects converge on mitochondria-induced apoptosis, transcriptional regulation and the cGAS-STING signaling pathway, mediating the immune response. Both Zn and Mn influence cancer progression and impact treatment efficacy in animal models and clinical trials. We predict that novel strategies targeting the regulation of both Zn and Mn in cancer will complement current therapeutic strategies.
In 2021, the fifth edition of the WHO classification of tumors of the central nervous system (WHO CNS5) was published. Molecular features of tumors were directly incorporated into the diagnostic decision tree, thus affecting both the typing and staging of the tumor. It has changed the traditional approach, based solely on histopathological classification. The Cancer Genome Atlas project (TCGA) is one of the main sources of molecular information about gliomas, including clinically annotated transcriptomic and genomic profiles. Although TCGA itself has played a pivotal role in developing the WHO CNS5 classification, its proprietary databases still retain outdated diagnoses which frequently appear incorrect and misleading according to the WHO CNS5 standards. We aimed to define the up-to-date annotations for gliomas from TCGA’s database that other scientists can use in their research. Based on WHO CNS5 guidelines, we developed an algorithm for the reclassification of TCGA glioma samples by molecular features. We updated tumor type and diagnosis for 828 out of a total of 1122 TCGA glioma cases, after which available transcriptomic and methylation data showed clustering features more consistent with the updated grouping. We also observed better stratification by overall survival for the updated diagnoses, yet WHO grade 3 IDH-mutant oligodendrogliomas and astrocytomas are still indistinguishable. We also detected altered performance in the previous diagnostic transcriptomic molecular biomarkers (expression of SPRY1, CRNDE and FREM2 genes and FREM2 molecular pathway) and prognostic gene signature (FN1, ITGA5, OSMR, and NGFR) after reclassification. Thus, we conclude that further efforts are needed to reconsider glioma molecular biomarkers.
Previously, we have shown that the aggregation of RNA-level gene expression profiles into quantitative molecular pathway activation metrics results in lesser batch effects and better agreement between different experimental platforms. Here, we investigate whether pathway level of data analysis provides any advantage when comparing transcriptomic and proteomic data. We compare the paired proteomic and transcriptomic gene expression and pathway activation profiles obtained for the same human cancer biosamples in The Cancer Genome Atlas (TCGA) and the NCI Clinical Proteomic Tumor Analysis Consortium (CPTAC) projects, for a total of 755 samples of glioblastoma, breast, liver, lung, ovarian, pancreatic, and uterine cancers. In a CPTAC assay, expression levels of 15,112 protein-coding genes were profiled using the Thermo QE series of mass spectrometers. In TCGA, RNA expression levels of the same genes were obtained using the Illumina HiSeq 4000 engine for the same biosamples. At the gene level, absolute gene expression values are compared, whereas pathway-grade comparisons are made between the pathway activation levels (PALs) calculated using average sample-normalized transcriptomic and proteomic profiles. We observed remarkably different average correlations between the primary RNA- and protein expression data for different cancer types: Spearman Rho between 0.017 (p = 1.7 × 10−13) and 0.27 (p < 2.2 × 10−16). However, at the pathway level we detected overall statistically significantly higher correlations: averaged Rho between 0.022 (p < 2.2 × 10−16) and 0.56 (p < 2.2 × 10−16). Thus, we conclude that data analysis at the PAL-level yields results of a greater similarity when comparing high-throughput RNA and protein expression profiles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.