Graphics Processing Units (GPUs) have numerous configuration and design options, including core frequency, number of parallel compute units (CUs), and available memory bandwidth. At many stages of the design process, it is important to estimate how application performance and power are impacted by these options. This paper describes a GPU performance and power estimation model that uses machine learning techniques on measurements from real GPU hardware. The model is trained on a collection of applications that are run at numerous different hardware configurations. From the measured performance and power data, the model learns how applications scale as the GPU's configuration is changed. Hardware performance counter values are then gathered when running a new application on a single GPU configuration. These dynamic counter values are fed into a neural network that predicts which scaling curve from the training data best represents this kernel. This scaling curve is then used to estimate the performance and power of the new application at different GPU configurations.Over an 8× range of the number of CUs, a 3.3× range of core frequencies, and a 2.9× range of memory bandwidth, our model's performance and power estimates are accurate to within 15% and 10% of real hardware, respectively. This is comparable to the accuracy of cycle-level simulators. However, after an initial training phase, our model runs as fast as, or faster than the program running natively on real hardware.
Reliability for general purpose processing on the GPU (GPGPU) is becoming a weak link in the construction of reliable supercomputer systems. Because hardware protection is expensive to develop, requires dedicated on-chip resources, and is not portable across different architectures, the efficiency of software solutions such as redundant multithreading (RMT) must be explored. This paper presents a real-world design and evaluation of automatic software RMT on GPU hardware. We first describe a compiler pass that automatically converts GPGPU kernels into redundantly threaded versions. We then perform detailed power and performance evaluations of three RMT algorithms, each of which provides fault coverage to a set of structures in the GPU. Using real hardware, we show that compilermanaged software RMT has highly variable costs. We further analyze the individual costs of redundant work scheduling, redundant computation, and inter-thread communication, showing that no single component in general is responsible for high overheads across all applications; instead, certain workload properties tend to cause RMT to perform well or poorly. Finally, we demonstrate the benefit of architectural support for RMT with a specific example of fast, register-level thread communication
As computation becomes increasingly limited by data movement and energy consumption, exploiting locality throughout the memory hierarchy becomes critical to continued performance scaling. Moving computation closer to memory presents an opportunity to reduce both energy and data movement overheads. We explore the use of 3D die stacking to move memory-intensive computations closer to memory. This approach to processing in memory addresses some drawbacks of prior research on in-memory computing and is commercially viable in the foreseeable future.Because 3D stacking provides increased bandwidth, we study throughput-oriented computing using programmable GPU compute units across a broad range of benchmarks, including graph and HPC applications. We also introduce a methodology for rapid design space exploration by analytically predicting performance and energy of in-memory processors based on metrics obtained from execution on today's GPU hardware. Our results show that, on average, viable PIM configurations show moderate performance losses (27%) in return for significant energy efficiency improvements (76% reduction in EDP) relative to a representative mainstream GPU at 22nm technology. At 16nm technology, on average, viable PIM configurations are performance competitive with a representative mainstream GPU (7% speedup) and provide even greater energy efficiency improvements (85% reduction in EDP).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.