The construction industry is experiencing changes in its processes and work methods, and the advancement of new technologies in recent decades has led to a new concept known as Construction 4.0, coined in 2016 in Germany. Since its definition is still diffuse, it was deemed necessary to conduct a review on the publications in this field to grasp how this concept is being understood. For that purpose, a bibliometric analysis was conducted among 260 research articles using seven keywords. The results reveal that the number of publications is growing exponentially, with the USA, the UK, and China being leaders in this field; besides, four technologies are essential to understand Construction 4.0 at present time: 3D printing, big data, virtual reality, and Internet of Things. The results of this review suggest that further reviews should be conducted every 3 years to grasp the rapid evolution of Construction 4.0.
Timber structures have gained interest for the construction of mid-rise buildings, but their seismic performance is still a matter under development. In this study, a numerical analysis of the seismic performance of light-frame timber buildings is developed through a highly detailed model using parallel computing tools. All of the lateral-load-resisting system components and connections are modeled. Combinations of lateral load capacity distributions in structures of one, three, and five stories are studied in order to assess the effects on the global performance of different triggered failure modes through nonlinear static and dynamic analyses. The results suggest that shear bracket connections and sheathing-to-framing connections control the buildings’ responses, as well as the failure mode. For a ductile response, the lateral displacement must be dominated by the in-plane wall distortion (racking); therefore, the system must be provided with a story shear sliding stiffness and load capacity at least twice that of the walls. Furthermore, based on the pushover capacity curves, the performance limits are proposed by evaluating the stiffness degradation. Finally, the effect of the mobilized failure mode on the structural fragility is analyzed. Even though standard desktop PCs are used in this research, significant reductions in the computation effort are achieved.
Currently, wood is presented as an alternative to traditional building materials and to mitigate climate change. Chile is one of the eight largest wood producers in the world; therefore, wood-based products are an easily accessible resource. The aim of this research is to reinforce at laboratory scale plywood panels with basalt and carbon engineer fibers using epoxy resin and polyvinyl acetate as an adhesive system to improve their physical and mechanical properties. Three-point static bending and Janka hardness tests were carried out. The results showed a better performance in the reinforced boards, which showed an increase in Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) properties in the parallel direction of about 48.2% and 52.8%, respectively. Additionally, for the perpendicular direction, there was an increase of 52.0% and 102.9%, respectively. On the other hand, the Fiber Reinforced Polymer (FRP) plywood panels showed an increase of at least 37% on the Janka hardness property, obtaining higher results with the polyvinyl acetate (PVA) adhesive. Finally, FRP–plywood, PVA–BF and PVA–CF may be a new option for composite wood materials, with their ductile behavior and superior mechanical properties, especially in the perpendicular direction, where the increases were greater than those shown in unreinforced plywood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.