Gut microbiota of patients with Parkinson's disease and healthy volunteers was analyzed by the method of high throughput 16S rRNA sequencing of bacterial genomes. In patients with Parkinson's diseases, changes in the content of 9 genera and 15 species of microorganisms were revealed: reduced content of Dorea, Bacteroides, Prevotella, Faecalibacterium, Bacteroides massiliensis, Stoquefichus massiliensis, Bacteroides coprocola, Blautia glucerasea, Dorea longicatena, Bacteroides dorei, Bacteroides plebeus, Prevotella copri, Coprococcus eutactus, and Ruminococcus callidus, and increased content of Christensenella, Catabacter, Lactobacillus, Oscillospira, Bifidobacterium, Christensenella minuta, Catabacter hongkongensis, Lactobacillus mucosae, Ruminococcus bromii, and Papillibacter cinnamivorans. This microbiological pattern of gut microflora can trigger local inflammation followed by aggregation of α-synuclein and generation of Lewy bodies.
BackgroundAlcohol abuse has deleterious effects on human health by disrupting the functions of many organs and systems. Gut microbiota has been implicated in the pathogenesis of alcohol-related liver diseases, with its composition manifesting expressed dysbiosis in patients suffering from alcoholic dependence. Due to its inherent plasticity, gut microbiota is an important target for prevention and treatment of these diseases. Identification of the impact of alcohol abuse with associated psychiatric symptoms on the gut community structure is confounded by the liver dysfunction. In order to differentiate the effects of these two factors, we conducted a comparative “shotgun” metagenomic survey of 99 patients with the alcohol dependence syndrome represented by two cohorts—with and without liver cirrhosis. The taxonomic and functional composition of the gut microbiota was subjected to a multifactor analysis including comparison with the external control group.ResultsAlcoholic dependence and liver cirrhosis were associated with profound shifts in gut community structures and metabolic potential across the patients. The specific effects on species-level community composition were remarkably different between cohorts with and without liver cirrhosis. In both cases, the commensal microbiota was found to be depleted. Alcoholic dependence was inversely associated with the levels of butyrate-producing species from the Clostridiales order, while the cirrhosis—with multiple members of the Bacteroidales order. The opportunist pathogens linked to alcoholic dependence included pro-inflammatory Enterobacteriaceae, while the hallmarks of cirrhosis included an increase of oral microbes in the gut and more frequent occurrence of abnormal community structures. Interestingly, each of the two factors was associated with the expressed enrichment in many Bifidobacterium and Lactobacillus—but the exact set of the species was different between alcoholic dependence and liver cirrhosis. At the level of functional potential, the patients showed different patterns of increase in functions related to alcohol metabolism and virulence factors, as well as pathways related to inflammation.ConclusionsMultiple shifts in the community structure and metabolic potential suggest strong negative influence of alcohol dependence and associated liver dysfunction on gut microbiota. The identified differences in patterns of impact between these two factors are important for planning of personalized treatment and prevention of these pathologies via microbiota modulation. Particularly, the expansion of Bifidobacterium and Lactobacillus suggests that probiotic interventions for patients with alcohol-related disorders using representatives of the same taxa should be considered with caution. Taxonomic and functional analysis shows an increased propensity of the gut microbiota to synthesis of the toxic acetaldehyde, suggesting higher risk of colorectal cancer and other pathologies in alcoholics.Electronic supplementary materialThe online version of this article (10.1...
Microbiomes are vast communities of microbes and viruses that populate all natural ecosystems. Viruses have been considered the most variable component of microbiomes, as supported by virome surveys and examples of high genomic mosaicism. However, recent evidence suggests that the human gut virome is remarkably stable compared to other environments. Here we investigate the origin, evolution, and epidemiology of crAssphage, a widespread human gut virus. Through a global collaboratory, we obtained DNA sequences of crAssphage from over one-third of the world's countries, and showed that its phylogeography is locally clustered within countries, cities, and individuals. We also found colinear crAssphage-like genomes in both Old-World and New-World primates, challenging genomic mosaicism and suggesting that the association of crAssphage with primates may be millions of years old. We conclude that crAssphage is a benign globetrotter virus that may have co-evolved with the human lineage and an integral part of the normal human gut virome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.