SUMMARY
Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients represent a powerful tool for biomedical research and may provide a source for replacement therapies. However, the use of viruses encoding the reprogramming factors represents a major limitation of the current technology since even low vector expression may alter the differentiation potential of the iPSCs or induce malignant transformation. Here, we show that fibroblasts from five patients with idiopathic Parkinson’s disease can be efficiently reprogrammed and subsequently differentiated into dopaminergic neurons. Moreover, we derived hiPSCs free of reprogramming factors using Cre-recombinase excisable viruses. Factor-free hiPSCs maintain a pluripotent state and show a global gene expression profile, more closely related to hESCs than to hiPSCs carrying the transgenes. Our results indicate that residual transgene expression in virus-carrying hiPSCs can affect their molecular characteristics and that factor-free hiPSCs therefore represent a more suitable source of cells for modeling of human disease.
Identification and use of cell surface cluster of differentiation (CD) biomarkers have enabled much scientific and clinical progress. We identify a CD surface antigen code for the neural lineage based on combinatorial flow cytometric analysis of three distinct populations derived from human embryonic stem cells: (1) CD15+/CD29HI/CD24LO surface antigen expression defined neural stem cells; (2) CD15−/CD29HI/CD24LO revealed neural crest-like and mesenchymal phenotypes; and (3) CD15−/CD29LO/CD24HI selected neuroblasts and neurons. Fluorescence-activated cell sorting (FACS) for the CD15−/CD29LO/CD24HI profile reduced proliferative cell types in human embryonic stem cell differentiation. This eliminated tumor formation in vivo, resulting in pure neuronal grafts. In conclusion, combinatorial CD15/CD24/CD29 marker profiles define neural lineage development of neural stem cell, neural crest, and neuronal populations from human stem cells. We believe this set of biomarkers enables analysis and selection of neural cell types for developmental studies and pharmacological and therapeutic applications.
The cardinal motor symptoms of Parkinson's disease (PD) are caused by the vulnerability to dysfunction and degeneration of ventral midbrain (VM) dopaminergic (DA) neurons. A major limitation for experimental studies of current ES/iPS cell differentiation protocols is the lack of VM DA neurons with a stable phenotype as defined by an expression marker code of FOXA2/TH/β-tubulin. Here we demonstrate a combination of three modifications that were required to produce VM DA neurons. Firstly, early and specific exposure to 10 −8 M (low dose) retinoic acid improved the regional identity of neural progenitor cells derived from human ES cells, PD or healthy subjectspecific iPS cells. Secondly, a high activity form of human sonic hedgehog established a sizeable FOXA2 + neural progenitor cell population in vitro. Thirdly, early exposure to FGF8a, rather than Fgf8b, and WNT1 was required for robust differentiation of the FOXA2 + floor plate-like human neural progenitor cells into FOXA2 + DA neurons. FOXA2 + DA neurons were also generated when this protocol was adapted to feeder-free conditions. In summary, this new human ES and iPS cell differentiation protocol using FGF8a, WNT1, low dose retinoic acid and a high activity form of SHH can generate human VM DA neurons that are required for relevant new bioassays, drug discovery and cell based therapies for PD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.