Redox flow batteries are an emerging technology for long-duration grid energy storage, but further cost reductions are needed to accelerate adoption. Improving electrode performance within the electrochemical stack offers a pathway to reduced system cost through decreased resistance and increased power density. To date, most research efforts have focused on modifying the surface chemistry of carbon electrodes to enhance reaction kinetics, electrochemically active surface area, and wettability. Less attention has been given to electrode microstructure, which has a significant impact on reactant distribution and pressure drop within the flow cell.Here, drawing from commonly used carbon-based diffusion media (paper, felt, cloth), we systematically investigate the influence of electrode microstructure on electrochemical performance. We employ a range of techniques to characterize the microstructure, pressure drop, and electrochemically active surface area in combination with in-operando diagnostics performed in a single electrolyte flow cell using a kinetically facile redox couple dissolved in a non-aqueous electrolyte. Of the materials tested, the cloth electrode shows the best performance; the highest current density at a set overpotential accompanied by the lowest hydraulic resistance. We hypothesize that the bimodal pore size distribution and periodic, well-defined microstructure of the cloth are key to lowering mass transport resistance.
Here, we have developed a dissolved oxygen and galvanic corrosion method to synthesize vertically aligned fluoride-incorporated nickel−iron oxyhydroxide nanosheet arrays on a compressed Ni foam as an efficient self-supported oxygen evolution electrode. It is integrated with poly(aryl piperidinium) hydroxide exchange membrane and ionomers with high ion exchange capacity into a hydroxide exchange membrane electrolyzer fed with pure water, which achieves a performance of 1020 mA cm −2 at 1.8 V and prevents the detachment of catalysts during continuous operation (>160 h at 200 mA cm −2 ). This work provides a potential pathway for massively producing low-cost hydrogen using intermittent renewable energy sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.