BackgroundBiogeochemical elemental cycling is driven by primary production of biomass via phototrophic phytoplankton growth, with 40% of marine productivity being assigned to diatoms. Phytoplankton growth is widely limited by the availability of iron, an essential component of the photosynthetic apparatus. The oceanic diatom Thalassiosira oceanica shows a remarkable tolerance to low-iron conditions and was chosen as a model for deciphering the cellular response upon shortage of this essential micronutrient.ResultsThe combined efforts in genomics, transcriptomics and proteomics reveal an unexpected metabolic flexibility in response to iron availability for T. oceanica CCMP1005. The complex response comprises cellular retrenchment as well as remodeling of bioenergetic pathways, where the abundance of iron-rich photosynthetic proteins is lowered, whereas iron-rich mitochondrial proteins are preserved. As a consequence of iron deprivation, the photosynthetic machinery undergoes a remodeling to adjust the light energy utilization with the overall decrease in photosynthetic electron transfer complexes.ConclusionsBeneficial adaptations to low-iron environments include strategies to lower the cellular iron requirements and to enhance iron uptake. A novel contribution enhancing iron economy of phototrophic growth is observed with the iron-regulated substitution of three metal-containing fructose-bisphosphate aldolases involved in metabolic conversion of carbohydrates for enzymes that do not contain metals. Further, our data identify candidate components of a high-affinity iron-uptake system, with several of the involved genes and domains originating from duplication events. A high genomic plasticity, as seen from the fraction of genes acquired through horizontal gene transfer, provides the platform for these complex adaptations to a low-iron world.
Benthic foraminifera are unicellular eukaryotes inhabiting sediments of aquatic environments. Several species were shown to store and use nitrate for complete denitrification, a unique energy metabolism among eukaryotes. The population of benthic foraminifera reaches high densities in oxygen-depleted marine habitats, where they play a key role in the marine nitrogen cycle. However, the mechanisms of denitrification in foraminifera are still unknown, and the possibility of a contribution of associated bacteria is debated. Here, we present evidence for a novel eukaryotic denitrification pathway that is encoded in foraminiferal genomes. Large-scale genome and transcriptomes analyses reveal the presence of a denitrification pathway in foraminifera species of the genus Globobulimina. This includes the enzymes nitrite reductase (NirK) and nitric oxide reductase (Nor) as well as a wide range of nitrate transporters (Nrt). A phylogenetic reconstruction of the enzymes' evolutionary history uncovers evidence for an ancient acquisition of the foraminiferal denitrification pathway from prokaryotes. We propose a model for denitrification in foraminifera, where a common electron transport chain is used for anaerobic and aerobic respiration. The evolution of hybrid respiration in foraminifera likely contributed to their ecological success, which is well documented in palaeontological records since the Cambrian period.
Benthic foraminifera populate a diverse range of marine habitats. Their ability to use alternative electron acceptors—nitrate (NO3−) or oxygen (O2)—makes them important mediators of benthic nitrogen cycling. Nevertheless, the metabolic scaling of the two alternative respiration pathways and the environmental determinants of foraminiferal denitrification rates are yet unknown. We measured denitrification and O2 respiration rates for 10 benthic foraminifer species sampled in the Peruvian oxygen minimum zone (OMZ). Denitrification and O2 respiration rates significantly scale sublinearly with the cell volume. The scaling is lower for O2 respiration than for denitrification, indicating that NO3− metabolism during denitrification is more efficient than O2 metabolism during aerobic respiration in foraminifera from the Peruvian OMZ. The negative correlation of the O2 respiration rate with the surface/volume ratio is steeper than for the denitrification rate. This is likely explained by the presence of an intracellular NO3− storage in denitrifying foraminifera. Furthermore, we observe an increasing mean cell volume of the Peruvian foraminifera, under higher NO3− availability. This suggests that the cell size of denitrifying foraminifera is not limited by O2 but rather by NO3− availability. Based on our findings, we develop a mathematical formulation of foraminiferal cell volume as a predictor of respiration and denitrification rates, which can further constrain foraminiferal biogeochemical cycling in biogeochemical models. Our findings show that NO3− is the preferred electron acceptor in foraminifera from the OMZ, where the foraminiferal contribution to denitrification is governed by the ratio between NO3− and O2.
The impact of ocean acidification and carbonation on microbial community structure was assessed during a large-scale in situ costal pelagic mesocosm study, included as part of the EPOCA 2010 Arctic campaign. The mesocosm experiment included ambient conditions (fjord) and nine mesocosms with <i>p</i>CO<sub>2</sub> levels ranging from ~145 to ~1420 μatm. Samples for the present study were collected at ten time points (<i>t</i>–1, <i>t</i>1, <i>t</i>5, <i>t</i>7, <i>t</i>12, <i>t</i>14, <i>t</i>18, <i>t</i>22, <i>t</i>26 to <i>t</i>28) in seven treatments (ambient fjord (~145), 2 × ~185, ~270, ~685, ~820, ~1050 μatm) and were analysed for "small" and "large" size fraction microbial community composition using 16S RNA (ribosomal ribonucleic acid) amplicon sequencing. This high-throughput sequencing analysis produced ~20 000 000 16S rRNA V4 reads, which comprised 7000 OTUs. The main variables structuring these communities were sample origins (fjord or mesocosms) and the community size fraction (small or large size fraction). The community was significantly different between the unenclosed fjord water and enclosed mesocosms (both control and elevated CO<sub>2</sub> treatments) after nutrients were added to the mesocosms, suggesting that the addition of nutrients is the primary driver of the change in mesocosm community structure. The relative importance of each structuring variable depended greatly on the time at which the community was sampled in relation to the phytoplankton bloom. The sampling strategy of separating the small and large size fraction was the second most important factor for community structure. When the small and large size fraction bacteria were analysed separately at different time points, the only taxon <i>p</i>CO<sub>2</sub> was found to significantly affect were the Gammaproteobacteria after nutrient addition. Finally, <i>p</i>CO<sub>2</sub> treatment was found to be significantly correlated (non-linear) with 15 rare taxa, most of which increased in abundance with higher CO<sub>2</sub>
Abstract. In the frame of the European Project on Ocean Acidification (EPOCA), the response of an Arctic pelagic community (<3 mm) to a gradient of seawater pCO 2 was investigated. For this purpose 9 large-scale in situ mesocosms were deployed in Kongsfjorden, Svalbard (78 • 56.2 N, 11 • 53.6 E), in 2010. The present study investigates effects on the communities of particle-attached (PA; >3 µm) and free-living (FL; <3 µm > 0.2 µm) bacteria by Automated Ribosomal Intergenic Spacer Analysis (ARISA) in 6 of the mesocosms, ranging from 185 to 1050 µatm initial pCO 2 , and the surrounding fjord. ARISA was able to resolve, on average, 27 bacterial band classes per sample and allowed for a detailed investigation of the explicit richness and diversity. Both, the PA and the FL bacterioplankton community exhibited a strong temporal development, which was driven mainly by temperature and phytoplankton development. In response to the breakdown of a picophytoplankton bloom, numbers of ARISA band classes in the PA community were reduced at low and medium CO 2 (∼ 185-685 µatm) by about 25 %, while they were more or less stable at high CO 2 (∼ 820-1050 µatm). We hypothesise that enhanced viral lysis and enhanced availability of organic substrates at high CO 2 resulted in a more diverse PA bacterial community in the postbloom phase. Despite lower cell numbers and extracellular enzyme activities in the post-bloom phase, bacterial protein production was enhanced in high CO 2 mesocosms, suggesting a positive effect of community richness on this function and on carbon cycling by bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.