Purpose: The novel coronavirus (severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)) first appeared in Wuhan, China, in December 2019, and rapidly spread across the globe. Since most respiratory viruses are known to show a seasonal pattern of infection, it has been hypothesised that SARS-CoV-2 may be seasonally dependent as well. The present study looks at a possible effect of atmospheric temperature, which is one of the suspected factors influencing seasonality, on the evolution of the pandemic. Basic procedures: Since confirming a seasonal pattern would take several more months of observation, we conducted an innovative day-to-day micro-correlation analysis of nine outbreak locations, across four continents and both hemispheres, in order to examine a possible relationship between atmospheric temperature (used as a proxy for seasonality) and outbreak progression. Main findings: There was a negative correlation between atmospheric temperature variations and daily new cases growth rates, in all nine outbreaks, with a median lag of 10 days. Principal conclusions: The results presented here suggest that high temperatures might dampen SARS-CoV-2 propagation, while lower temperatures might increase its transmission. Our hypothesis is that this could support a potential effect of atmospheric temperature on coronavirus disease progression, and potentially a seasonal pattern for this virus, with a peak in the cold season and rarer occurrences in the summer. This could guide government policy in both the Northern and Southern hemispheres for the months to come.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.