Toroidal multipoles are the terms missing in the standard multipole expansion; they are usually overlooked due to their relatively weak coupling to the electromagnetic fields. Here, we propose and theoretically study all-dielectric metamaterials of a special class that represent a simple electromagnetic system supporting toroidal dipolar excitations in the THz part of the spectrum. We show that resonant transmission and reflection of such metamaterials is dominated by toroidal dipole scattering, the neglect of which would result in a misunderstanding interpretation of the metamaterials' macroscopic response. Because of the unique field configuration of the toroidal mode, the proposed metamaterials could serve as a platform for sensing or enhancement of light absorption and optical nonlinearities.
We demonstrate that ideal anapole metamaterials have infinite Q-factor. We have designed and fabricated a metamaterial consisting of planar metamolecules which exhibit anapole behavior in the sense that the electric dipole radiation is almost cancelled by the toroidal dipole one, producing thus an extremely high Q-factor at the resonance frequency. The size of the system, at the mm range, and the parasitic magnetic quadrupole radiation are the factors limiting the size of the Q-factor. In spite of the very low radiation losses the local fields at the metamolecules are extremely high, of the order of 4 10 higher than the external incoming field.
We show that for a particular choice of gauge the vector potential of any non-radiating source is spatially localized along with its electric and magnetic fields. Important on its own, this special property of non-radiating sources dramatically simplifies the analysis of their quantitative aspects, and enables the interpretation of non-radiating sources as distributions of the elementary dynamic anapoles. Using the developed approach we identify and discuss a possible scenario for observing the time-dependent version of the Aharonov-Bohm effect in such systems.
In this paper, we demonstrate the relation between cloaking effect and its nonradiating state by considering the destructive multipolar interaction between near-field scattering by bare object and surrounding coating located in its proximity. This cloaking effect is underpinned by anapole mode excitation and it occurs as destructive interference between the electric dipole moment, generated by a bare object (here a central metallic scatterer) and the toroidal moment, formed inside the cloak (a surrounding cluster of dielectric cylinders). Numerical results show how a cloaking effect based on the formation of the anapole mode can lead to an overall nonradiating metamolecule with all-dielectric materials in the coating region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.