Gain and loss of DNA methylation in cells is a dynamic process that tends to achieve an equilibrium. Many factors are involved in maintaining the balance between DNA methylation and demethylation. Previously, it was shown that methyl-DNA protein Kaiso may attract NCoR, SMRT repressive complexes affecting histone modifications. On the other hand, the deficiency of Kaiso resulted in reduced methylation of ICR in H19/Igf2 locus and Oct4 promoter in mouse embryonic fibroblasts. However, nothing is known about how Kaiso influences DNA methylation at the genome level. Here we show that deficiency of Kaiso led to whole-genome hypermethylation, using Kaiso deficient human renal cancer cell line obtained via CRISPR/CAS9 genome editing. However, Kaiso serves to protect genic regions, enhancers, and regions with a low level of histone modifications from demethylation. We detected hypomethylation of binding sites for Oct4 and Nanog in Kaiso deficient cells. Kaiso immunoprecipitated with de novo DNA methyltransferases DNMT3a/3b, but not with maintenance methyltransferase DNMT1. Thus, Kaiso may attract methyltransferases to surrounding regions and modulate genome methylation in renal cancer cells apart from being methyl DNA binding protein.
Hypermethylation of tumor suppressors and other aberrations of DNA methylation in tumors play a significant role in cancer progression. DNA methylation can be affected by various environmental conditions including hypoxia. The response to hypoxia is mainly achieved through activation of the transcription program associated with HIF1a transcription factor. VHL inactivation by genetic or epigenetic events, which also induces aberrant activation of HIF1a, is the most common driver event for renal cancer. With whole-genome bisulfite sequencing and LC-MS, we demonstrated that VHL inactivation induced global genome hypermethylation in human kidney cancer cells under normoxic conditions. This effect was reverted by exogenous expression of wild-type VHL. We show that global genome hypermethylation in VHL mutants can be explained by transcriptional changes in MDH and L2HGDH genes that cause the accumulation of 2-hydroxyglutarate—a metabolite that inhibits DNA demethylation by Tet enzymes. Unlike the known cases of DNA hypermethylation in cancer, 2-hydroxyglutarate was accumulated in IDH wild type cells.Key pointsInactivation of VHL gene leads to genome hypermethylation in kidney cancer cells. The DNA methylation phenotype can be rescued by endogenous expression of wild-type VHL.DNA hypermethylation can be attributed to the accumulation of a Tet inhibitor 2-hydroxyglutarateThe accumulation of 2-hydroxyglutarate in IDH wild-type cells is explained by gene expression changes in key metabolic enzymes (malate dehydrogenase MDH and 2-hydroxyglutrarate dehydrogenase L2HGDH).
For evolutionary biology, the phenotypic consequences of epigenetic variations and their potential contribution to adaptation and diversification are pressing issues. Marine and freshwater sticklebacks represent an ideal model for studying both genetic and epigenetic components of phenotypic plasticity that allow fish to inhabit water with different salinity. Here, we applied single-cell genomics (scRNA-seq and scATAC-seq) and whole-genome bisulfite sequencing to characterize intercellular variability in transcription, the abundance of open chromatin regions, and CpG methylation level in gills of marine and freshwater stickleback morphs. We found little difference in overall transcriptional variance between the morphs but observed significant changes in chromatin openness dispersion. In addition, genomic divergence islands (DIs) coincided with regions of increased methylation entropy in freshwater fish. Moreover, analysis of transcription factor binding sites within DIs revealed that СTCF motifs around marker SNPs were significantly enriched within the region. Altogether our data confirm the role of epigenetic variance in the adaptation of marine sticklebacks to freshwater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.