Considering the serious impact caused to the environment by the inappropriate disposal of waste motor oils, it is essential to find alternative mechanisms to handle and dispose these wastes in a controlled process. The reuse of waste motor oil as a resource for the synthesis of diesel-like fuels provides an alternative way for the disposal of this residue in a feasible, sustainable, and environmentally responsible way. This work addresses the kinetic study of the catalytic cracking of waste motor oil using mesoporous aluminum silicate materials impregnated with 1 and 2% zinc. Both the waste motor oil and liquid fuel product were characterized according to ASTM standards to ensure an adequate characterization and to guarantee the proper quality of the product. The results from the overall kinetic approach show that the cracking reaction can be described using a first-order rate equation with respect to the concentration of the used motor oil. The activation energy for the thermal cracking reaction is 370 kJ/mol. It is reduced by 22% to 287 kJ/mol when the alumina silicate catalysts are used. Also, during the reaction, the overall yield of the reaction with respect to the liquid fuel is increased from 63% during the thermal reaction to 90% during the catalytic reaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.