In today’s complex and ever-changing world, Supply Chain Management (SCM) is increasingly becoming a cornerstone to any company to reckon with in this global era for all industries. The rapidly growing interest in the application of Deep Learning (a class of machine learning algorithms) in SCM, has urged the need for an up-to-date systematic review on the research development. The main purpose of this study is to provide a comprehensive vision by reviewing a set of 43 papers about applications of Deep Learning (DL) methods to the SCM, as well as the trends, perspectives, and potential research gaps. This review uses content analysis to answer three research questions namely: 1- What SCM problems have been solved by the use of DL techniques? 2- What DL algorithms have been used to solve these problems? 3- What alternative algorithms have been used to tackle the same problems? And do DL outperform these methods and through which evaluation metrics? This review also responds to this call by developing a conceptual framework in a value-adding perspective that provides a full picture of areas on where and how DL can be applied within the SCM context. This makes it easier to identify potential applications to corporations, in addition to potential future research areas to science. It might also provide businesses a competitive advantage over their competitors by allowing them to add value to their data by analyzing it quickly and precisely.
Every player in the market has a greater need to know about the smallest change in the market. Therefore, the ability to see what is ahead is a valuable advantage. The purpose of this research is to make an attempt to understand the behavioral patterns and try to find a new hybrid forecasting approach based on ARIMA-ANN for estimating styrene price. The time series analysis and forecasting is an essential tool which could be widely useful for finding the significant characteristics for making future decisions. In this study ARIMA, ANN and Hybrid ARIMA-ANN models were applied to evaluate the previous behavior of a time series data, in order to make interpretations about its future behavior for styrene price. Experimental results with real data sets show that the combined model can be most suitable to improve forecasting accurateness rather than traditional time series forecasting methodologies. As a subset of the literature, the small number of studies have been done to realize the new forecasting methods for forecasting styrene price.
The purpose of this research is to evaluate the influence of marketing factors of SNOWA Corporation on its marketing strategic planning. The present study is an applied research using a descriptive-analytic method. The statistical sample of this research includes 300 personnel of SNOWA Corporation. Data were collected applying a standard questionnaire on a five-point Likert scale. CVR and CVI indices were used to evaluate the content validity of the questionnaire, and a Cronbach's Alpha Test was applied to assess its reliability. SPSS Software (factor analysis) and Amos Software (structural equation modelling) were applied to analyse the collected data. The study will help managers accomplish market opportunities efficiently while formulating corporation strategies. Findings further reveal that consideration of marketing factors can give managers valuable information that, if applied correctly, can effectively guarantee corporation's success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.