Coral reefs are considered among the most diverse ecosystems on Earth, yet little is known about the diversity of plankton in the surrounding water column. Moreover, few studies have utilized genomic methods to investigate zooplankton diversity in any habitat. This study investigated the diversity of taxa by sampling 45 stations around three reef systems in the central/southern Red Sea. The diversity of metazoan plankton was investigated by targeting the 18S rRNA gene and clustering OTUs at 97% sequence similarity. A total of 754 and 854 metazoan OTUs were observed in the data set for the 1380F and 1389F primer sets respectively. The phylum Arthropoda dominated both primer sets accounting for ∼60% of reads followed by Cnidaria (∼20%). Only about 20% of OTUs were shared between all three reef systems and the relation between geographic distance and Jaccard Similarity measures was not significant. Cluster analysis showed that there was no distinct split between reefs and stations from different reefs clustered together both for metazoans as a whole and for the phyla Arthropoda, Cnidaria and Chordata separately. This suggests that distance may not be a determining factor in the taxonomic composition of stations.
An integral concept of ecological research is the constraint of biodiversity along latitudinal and environmental gradients. The Red Sea features a natural example of a latitudinal gradient of salinity, temperature and nutrient richness. Coral reefs along the Red Sea coasts are supported with allochthonous resources such as oceanic and neritic phytoplankton and zooplankton; however, relatively little is known about how the ecohydrography correlates with plankton biodiversity and abundance. In this article we present the biodiversity of phytoplankton and zooplankton in Red Sea coral reefs. Oceanographic data (temperature, salinity), water samples for nutrient analysis, particulate organic matter, phytoplankton and zooplankton, the latter with special reference to Copepoda (Crustacea), were collected at nine coral reefs over ~1500 km distance along the Red Sea coast of Saudi Arabia. The trophic state of ambient waters [as indicated by chlorophyll a (Chl a)] changed from strong oligotrophy in the north to mesotrophy in the south and was associated with increasing biomasses of Bacillariophyceae, picoeukaryotes and Synechococcus as indicated by pigment fingerprinting (CHEMTAX) and flow cytometry. Net‐phytoplankton microscopy revealed a Trichodesmium erythraeum (Cyanobacteria) bloom north of the Farasan Islands. Several potentially harmful algae, including Dinophysis miles and Gonyaulax spinifera (Dinophyceae), were encountered in larger numbers in the vicinity of the aquaculture facilities at Al Lith. Changes in zooplankton abundance were mainly correlated to the phytoplankton biomass following the latitudinal gradient. The largest zooplankton abundance was observed at the Farasan Archipelago, despite high abundances of copepodites, veligers (Gastropoda larvae) and Chaetognatha at Al Lith. Although the community composition changed over latitude, biodiversity indices of phytoplankton and zooplankton did not exhibit a systematic pattern. As this study constitutes the first current account of the plankton biodiversity in Red Sea coral reefs at a large spatial scale, the results will be informative for ecosystem‐based management along the coastline of Saudi Arabia.
Please cite this article as: Kürten, B., Al-Aidaroos, A.M., Kürten, S., El-Sherbiny, M.M., Devassy, R.P., Struck, U., Zarokanellos, N., Jones, B.H., Hansen, T., Bruss, G., Sommer, U., Carbon and nitrogen stable isotope ratios of pelagic zooplankton elucidate ecohydrographic features in the oligotrophic Red Sea, Progress in Oceanography (2015), doi: http://dx.doi.org/10.1016/j.pocean. 2015.11.003 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. only by the thermohaline circulation, but also by mesoscale activities that transports nutrients to the upper water layers and interact with the general circulation pattern. Ecohydrographic features of the Red Sea, therefore, aid in explaining the observed configurations of isoscapes at the macroecological scale.
Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project.We use a rapid molecular screening approach on Arabian demosponge collections and analyse results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.