By analogy to conventional environmental impacts, the potential release of debris or generation of fragments can be considered as the emission of an environmental stressor damaging the orbital ‘natural’ resource which supports space activities. Hence, it appears relevant to integrate systematically the impact of the emission of debris on the orbital resource within the life cycle impact assessment (LCIA) step to broaden the scope of life cycle assessment (LCA) for space systems. The main objective of this article is to propose a set of characterization factors to compute the impact caused by the generation of debris within the orbital environment. To do so, the proposed approach follows the methodology of emission-related characterization models in LCIA. the characterization model enables to link the emission of debris and final economic damages to space activities through a complete impact pathway including the fate of debris in downstream orbital compartments, the exposure of targeted space objects to this debris, and the economic damage in case of collision between the debris and the space object. The model is computed for different compartments of the low earth orbit (LEO) region thanks to a discretization of the orbital environment. Results show that the potential damages are the highest for orbital compartments located in the orbital bands of altitude/inclination: 550–2000 km/52–54°, 1,200–2000 km/86–88°, 400–2000 km/96–100°, because of the downstream location of Starlink constellation, OneWeb constellation, and earth observation satellites, respectively. The proposed set of CFs can be used in the LCA of different space systems in order to include impacts and damages related to space debris, along with other environmental impacts. This original development fully in line with the standardized LCIA framework would have potential for further integration into harmonised sector-specific rules for the European space sector such as product environmental footprint category rules (PEFCR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.