Abstract-The ubiquity of smartphones has led to the emergence of mobile crowdsourcing tasks such as the detection of spatial events when smartphone users move around in their daily lives. However, the credibility of those detected events can be negatively impacted by unreliable participants with low-quality data. Consequently, a major challenge in mobile crowdsourcing is truth discovery, i.e., to discover true events from diverse and noisy participants' reports. This problem is uniquely distinct from its online counterpart in that it involves uncertainties in both participants' mobility and reliability. Decoupling these two types of uncertainties through location tracking will raise severe privacy and energy issues, whereas simply ignoring missing reports or treating them as negative reports will significantly degrade the accuracy of truth discovery. In this paper, we propose two new unsupervised models, i.e., Truth finder for Spatial Events (TSE) and Personalized Truth finder for Spatial Events (PTSE), to tackle this problem. In TSE, we model location popularity, location visit indicators, truths of events, and three-way participant reliability in a unified framework. In PTSE, we further model personal location visit tendencies. These proposed models are capable of effectively handling various types of uncertainties and automatically discovering truths without any supervision or location tracking. Experimental results on both real-world and synthetic datasets demonstrate that our proposed models outperform existing state-of-the-art truth discovery approaches in the mobile crowdsourcing environment.
Information about quantitative characteristics in local businesses and services, such as the number of people waiting in line in a cafe and the number of available fitness machines in a gym, is important for informed decision, crowd management and event detection. In this paper, we investigate the potential of leveraging crowds as sensors to report such quantitative characteristics and investigate how to recover the true quantity values from noisy crowdsourced information. Through experiments, we find that crowd sensors have both bias and variance in quantity sensing, and task difficulties impact the sensing accuracy. Based on these findings, we propose an unsupervised probabilistic model to jointly assess task difficulties, ability of crowd sensors and true quantity values. Our model differs from existing categorical truth finding models as ours is specifically designed to tackle quantitative truth. In addition to devising an efficient model inference algorithm in a batch mode, we also design an even faster online version for handling streaming data. Experimental results in various scenarios demonstrate the effectiveness of our model.
Abstract. We address the collaborative planning problem in teams of agents where partners have different objectives and norms. In this context, agreeing on the best course of action to adopt represents a significant challenge. Concurrent actions and causal plan-constraints may lead to conflicts of opinion on what to do. Moreover, individual norms can constrain agent behaviour. We propose an argumentation-based model for deliberative dialogues based on argumentation schemes. This model facilitates agreements about joint plans by enriching the quality of the dialogue through the exchange of relevant information about plan commitments and norms.
SMT solvers can be used efficiently to search for optimal paths across multiple graphs when optimising for certain resources. In the medical context, these graphs can represent treatment plans for chronic conditions where the optimal paths across all plans under consideration are the ones which minimize adverse drug interactions. The SMT solvers, however, work as a black-box model and there is a need to justify the optimal plans in a human-friendly way. We aim to fulfill this need by proposing explanatory dialogue protocols based on computational argumentation to increase the understanding and trust of humans interacting with the system. The protocols provide supporting reasons for nodes in a path and also allow counter reasons for the nodes not in the graph, highlighting any potential adverse interactions during the dialogue.
Abstract. Models of deliberative dialogue are fundamental for developing autonomous systems that support human practical reasoning. The question discussed in this paper is whether existing models are able to capture the complexity and richness of natural deliberation. In real-world contexts, circumstances relevant to the decision can change rapidly. We reflect on today's leading model of deliberation dialogue and we propose an extension to capture how newly exchanged information about changing circumstances may shape the dialogue. Moreover, in natural deliberation, a dialogue may be successful even if a decision on what to do has not been made. A set of criteria is proposed to address the problem of when to close off the practical reasoning phase of dialogue. We discuss some measures for evaluating the success of a dialogue after closure and we present some initial efforts to introduce the new deliberation features within an existing model of agent dialogue. We believe that our extended model of dialogue may contribute to representing that richness of natural deliberative dialogue that is yet to be addressed in existing models of agent deliberation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.