This paper brings an innovative processing route of manganese deep-sea nodules, which results in completely new grades of alloys. Deep-sea nodules were processed by aluminothermic method without the extraction of individual elements, producing complexly alloyed manganese-based “natural alloys”. Three levels of the amount of aluminum were used for the aluminothermic reduction, and hence the alloys differ strongly in the amount of aluminum, which has a significant effect on their phase composition. The alloys have very high wear resistance, comparable with tool steel. The disadvantage of low-aluminum alloy is the susceptibility to local thermal cracking during friction, which occurs especially in the case of a dry sliding wear against the static partner with low thermal conductivity.
Aluminothermic reduction without the separation of individual metals is currently considered as a possible method for processing ferromanganese sea nodules and creating new alloys. In this study, the product of their reduction—a manganese-based polymetallic mixture—was added to pure aluminum, as a mixture of alloying elements in their natural ratios. After extrusion, two new aluminum alloys with a total percentage of metallic additives ranging from 1 to 6 percent were prepared. The possibilities of the precipitation strengthening of these aluminum alloys, especially those containing Mn, Fe, Si, Ni, and Cu, were investigated under a wide range of heat treatment conditions. After each tested combination of annealing and artificial aging temperatures, the phase composition and the microstructure changes were recorded by X-ray diffraction, optical, and scanning electron microscopy with EDS analysis. Under none of the tested heat treatment conditions is a significant hardening effect observed, even though the precipitate phases are observed by TEM. However, the changes in the morphology of the present intermetallic phases caused by the heat treatment are revealed, which highlights the further possible development of these multicomponent alloys.
Deep-sea manganese nodules are polymetallic oxidic ores that can be found on a seabed. Aluminothermic reduction is one of the possibilities of manganese nodules processing. This process obtains the polymetallic alloy with a high content of Mn and a varying content of Al, depending on the ratio between aluminum and nodules. The corrosion behaviors of three experimental Mn-based alloys produced by aluminothermic reduction with a content of Mn > 50 wt % were studied. The electrochemical testing in potable water and model seawater was used to explain the corrosion mechanism of Mn-based alloys. The results showed that the corrosion rate of experimental Mn-based alloy decreases with the increase in aluminum content in both potable water and model seawater. It was observed that the uniform corrosion of experimental Mn-based alloys is changed with an increase in aluminum content in alloy to localized corrosion, which was caused by microcells in an environment of model seawater. In contrast, the formation of a semi-protective layer of corrosion products was observed on the surface of Mn-based alloys with a higher content of aluminum in potable water. Moreover, the pitting corrosion of tested Mn-based alloys was observed neither in potable water nor in model seawater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.