Idiosyncratic drug-induced liver injury (IDILI) remains a significant problem for patients and drug development. The idiosyncratic nature of IDILI makes mechanistic studies difficult, and little is known of its pathogenesis for certain. Circumstantial evidence suggests that most, but not all, IDILI is caused by reactive metabolites of drugs that are bioactivated by cytochromes P450 and other enzymes in the liver. Additionally, there is overwhelming evidence that most IDILI is mediated by the adaptive immune system; one example being the association of IDILI caused by specific drugs with specific human leukocyte antigen (HLA) haplotypes, and this may in part explain the idiosyncratic nature of these reactions. The T cell receptor repertoire likely also contributes to the idiosyncratic nature. Although most of the liver injury is likely mediated by the adaptive immune system, specifically cytotoxic CD8+ T cells, adaptive immune activation first requires an innate immune response to activate antigen presenting cells and produce cytokines required for T cell proliferation. This innate response is likely caused by either a reactive metabolite or some form of cell stress that is clinically silent but not idiosyncratic. If this is true it would make it possible to study the early steps in the immune response that in some patients can lead to IDILI. Other hypotheses have been proposed, such as mitochondrial injury, inhibition of the bile salt export pump, unfolded protein response, and oxidative stress although, in most cases, it is likely that they are also involved in the initiation of an immune response rather than representing a completely separate mechanism. Using the clinical manifestations of liver injury from a number of examples of IDILI-associated drugs, this review aims to summarize and illustrate these mechanistic hypotheses.
Although clozapine is a highly efficacious schizophrenia treatment, it is under-prescribed due to the risk of idiosyncratic drug-induced agranulocytosis (IDIAG). Clinical data indicate that most patients starting clozapine experience a transient immune response early in treatment and a similar response has been observed in clozapine-treated rats, but the mechanism by which clozapine triggers this transient inflammation remains unclear. Therefore, the aim of this study was to characterize the role of inflammasome activation during the early immune response to clozapine using in vitro and in vivo models. In both differentiated and non-differentiated human monocytic THP-1 cells, clozapine, but not its structural analogues fluperlapine and olanzapine, caused inflammasome-dependent caspase-1 activation and IL-1β release that was inhibited using the caspase-1 inhibitor yVAD-cmk. In Sprague-Dawley rats, a single dose of clozapine caused an increase in circulating neutrophils and a decrease in lymphocytes within hours of drug administration along with transient spikes in the proinflammatory mediators IL-1β, CXCL1, and TNF-α in the blood, spleen, and bone marrow. Blockade of inflammasome signaling using the caspase-1 inhibitor VX-765 or the IL-1 receptor antagonist anakinra attenuated this inflammatory response. These data indicate that caspase-1-dependent IL-1β production is fundamental for the induction of the early immune response to clozapine and, furthermore, support the general hypothesis that inflammasome activation is a common mechanism by which drugs associated with the risk of idiosyncratic reactions trigger early immune system activation. Ultimately, inhibition of inflammasome signaling may reduce the risk of idiosyncratic drug-induced agranulocytosis, enabling safer, more frequent use of clozapine in patients.
The risk of idiosyncratic drug-induced agranulocytosis (IDIAG) markedly constrains the use of clozapine, a neuroleptic with unparalleled efficacy. Most clozapine patients experience an early inflammatory response, likely a necessary step in IDIAG onset. However, most patients do not progress to IDIAG, presumably because of the requirement of specific human leukocyte antigen (HLA) haplotypes, T cell receptors, and other unknown factors. We established that clozapine activates inflammasomes and that myeloperoxidase bioactivation of clozapine generates neoantigens, but the connection between these early mechanistic events remained unknown and, thus, was the aim of this work. We found that the myeloperoxidase inhibitor PF-1355 attenuated myeloperoxidase activity in phorbol myristate acetate (PMA)-differentiated THP-1 macrophages, and it also attenuated clozapine-induced release of inflammatory mediators (e.g., IL-1β, CXCL1, and C-reactive protein). In vivo, pretreatment of Sprague Dawley rats with PF-1355 significantly attenuated clozapine-induced increases in neutrophil mobilization from the bone marrow to the blood and spleen, as determined using differential blood counts and flow cytometry. Moreover, the clozapine-triggered release of inflammatory mediators (e.g., IL-1β, calprotectin, CXCL1, and α-1-acid glycoprotein) from the liver, spleen, and bone marrow was dampened by myeloperoxidase inhibition. These data support the working hypothesis that oxidation of clozapine to a reactive metabolite by myeloperoxidase is critical for induction of the inflammatory response to clozapine. Ultimately, a better mechanistic understanding of the early events involved in the immune response to clozapine may elucidate ways to prevent IDIAG, enabling safer, more frequent therapeutic use of this and potentially other highly efficacious drugs.
Trimethoprim (TMP)-induced skin rash and liver injury are likely to involve the formation of reactive metabolites. Analogous to nevirapine-induced skin rash, 1 possible reactive metabolite is the sulfate conjugate of α-hydroxyTMP, a metabolite of TMP. We synthesized this sulfate and found that it reacts with proteins in vitro. We produced a TMP-antiserum and found covalent binding of TMP in the liver of TMP-treated rats. However, we found that α-hydroxyTMP is not a substrate for human sulfotransferases, and we did not detect covalent binding in the skin of TMP-treated rats. Although less reactive than the sulfate, α-hydroxyTMP was found to covalently bind to liver and skin proteins in vitro. Even though there was covalent binding to liver proteins, TMP did not cause liver injury in rats or in our impaired immune tolerance mouse model that has been able to unmask the ability of other drugs to cause immune-mediated liver injury. This is likely because there was much less covalent binding of TMP in the livers of TMP-treated mice than TMP-treated rats. It is possible that some patients have a sulfotransferase that can produce the reactive benzylic sulfate; however, α-hydroxyTMP, itself, has sufficient reactivity to covalently bind to proteins in the skin and may be responsible for TMP-induced skin rash. Interspecies and interindividual differences in TMP metabolism may be 1 factor that determines the risk of TMP-induced skin rash. This study provides important data required to understand the mechanism of TMP-induced skin rash and drug-induced skin rash in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.