Maneuvers of head and neck muscle contractions evoked tinnitus modulation in a frequent and reliable manner. Also, the repetition of such maneuvers for 2 months altered the pattern of modulation.
Intentionally grown GaN inversion domain boundaries (IDBs) of lateral polarity heterostructures have been spectroscopically imaged at low temperature using high spatial resolution photoluminescence. It is shown that the IDBs are not only optically active, but are more than an order of magnitude brighter than the GaN bulk material. Our findings are in agreement with calculations predicting that IDBs should not adversely affect near-band-gap photoluminescence due to the absence of midgap electronic states. Typical linewidths are on the order of 10–20 meV, however, features less than 0.6 meV are observed. The boundary emission is found to be neither spectrally nor spatially uniform. Also, a strong polarization dependence of the IDB photoluminescence is measured and determined to be oriented parallel to the boundary between GaN of N- or Ga-face polarity.
We report on x-ray diffraction and micro-Raman scattering studies on zinc blende InN epitaxial films. The samples were grown by molecular beam epitaxy on GaAs(001) substrates using a InAs layer as a buffer. The transverse-optical (TO) and longitudinal-optical phonon frequencies at Γ of c-InN are determined and compared to the corresponding values for c-GaN. Ab initio self-consistent calculations are carried out for the c-InN and c-GaN lattice parameters and TO phonon frequencies. A good agreement between theory and experiment is found.
We present results of first-and second-order Raman-scattering experiments on hexagonal and cubic InN covering the acoustic and optical phonon and overtone region. Using a modified valence-force model, we calculated the phonon dispersion curves and the density of states in both InN modifications. The observed Raman shifts agree well the calculated ⌫-point frequencies and the corresponding overtone density of states. A tentative assignment to particular phonon branches is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.