Online algorithm is a well-known computational model. We introduce quantum online algorithms and investigate them with respect to a competitive ratio in two points of view: space complexity and advice complexity. We start with exploring a model with restricted memory and show that quantum online algorithms can be better than classical ones (deterministic or randomized) for sublogarithmic space (memory), and they can be better than deterministic online algorithms without restriction for memory. Additionally, we consider polylogarithmic space case and show that in this case, quantum online algorithms can be better than deterministic ones as well. Another point of view to the online algorithms model is advice complexity. So, we introduce quantum online algorithms with a quantum channel with an adviser. Firstly, we show that quantum algorithms have at least the same computational power as classical ones have. And we give some examples of quantum online algorithms with advice. Secondly, we show that if we allow to use shared entangled qubits (EPR-pairs), then quantum online algorithm can use two times less advise qubits comparing to a classical one. We apply this approach to the well-known Paging Problem.
Abstract. We consider Quantum OBDD model. It is restricted version of read-once Quantum Branching Programs, with respect to "width" complexity. It is known that maximal complexity gap between deterministic and quantum model is exponential. But there are few examples of such functions. We present method (called "reordering"), which allows to build Boolean function g from Boolean Function f , such that if for f we have gap between quantum and deterministic OBDD complexity for natural order of variables, then we have almost the same gap for function g, but for any order. Using it we construct the total function REQ which deterministic OBDD complexity is 2 Ω(n/ log n) and present quantum OBDD of width O(n 2 ). It is bigger gap for explicit function that was known before for OBDD of width more than linear. Using this result we prove the width hierarchy for complexity classes of Boolean functions for quantum OBDDs. Additionally, we prove the width hierarchy for complexity classes of Boolean functions for bounded error probabilistic OBDDs. And using "reordering" method we extend a hierarchy for k-OBDD of polynomial size, for k = o(n/ log 3 n). Moreover, we proved a similar hierarchy for bounded error probabilistic k-OBDD. And for deterministic and probabilistic k-OBDDs of superpolynomial and subexponential size.
We consider online algorithms with respect to the competitive ratio. Here, we investigate quantum and classical one-way automata with non-constant size of memory (streaming algorithms) as a model for online algorithms. We construct problems that can be solved by quantum online streaming algorithms better than by classical ones in a case of logarithmic or sublogarithmic size of memory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.