Recent widespread interest in the development of engineered tissue and organ replacement therapies has prompted demand for new approaches to immobilize exogenous components to natural collagen. Chemical coupling of synthetic moieties to amino acid side chains has been commonly practiced for such purposes; however, such coupling reactions are difficult to control on large proteins and are generally not conducive to modifying integrated collagen scaffolds that contain live cells and tissues. As an alternative to the conventional "covalent" modification method, we have developed a novel "physical" modification technique that is based on collagen's native ability to associate into a triple-helical molecular architecture. Here, we present a finding that collagen mimetic peptides (CMPs) of sequence -(Pro-Hyp-Gly)x- exhibit strong affinity to both native and gelatinized type I collagen under controlled thermal conditions. We also show that the cell adhesion characteristics of collagen can be readily altered by applying a poly(ethylene glycol)-CMP conjugate to a prefabricated collagen film.
The cumulative revision rate for primary implants suggests an ongoing linear relationship between the time of postprimary implantation and the need for revision surgery. We have formed an evidence base that characterizes the nature and frequency of revision surgery in a high-volume setting, allowing clinicians to effectively counsel prospective patients and clinics to understand the burden of revision surgery and device failure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.