The organization of actin filaments into large ordered structures is a tightly controlled feature of many cellular processes. However, the mechanisms by which actin filament polymerization is initiated from the available pool of profilin-bound actin monomers remain unknown in plants. Because the spontaneous polymerization of actin monomers bound to profilin is inhibited, the intervention of an actin promoting factor is required for efficient actin polymerization. Two such factors have been characterized from yeasts and metazoans: the Arp2/3 complex, a complex of seven highly conserved subunits including two actin-related proteins (ARP2 and ARP3), and the FORMIN family of proteins. The recent finding that Arabidopsis thaliana plants lacking a functional Arp2/3 complex exhibit rather modest morphological defects leads us to consider whether the large FORMIN family plays a central role in the regulation of actin polymerization. Here, we have characterized the mechanism of action of Arabidopsis FORMIN1 (AFH1). Overexpression of AFH1 in pollen tubes has been shown previously to induce abnormal actin cable formation. We demonstrate that AFH1 has a unique behavior when compared with nonplant formins. The activity of the formin homology domain 2 (FH2), containing the actin binding activity, is modulated by the formin homology domain 1 (FH1). Indeed, the presence of the FH1 domain switches the FH2 domain from a tight capper (K d ;3.7 nM) able to nucleate actin filaments that grow only in the pointed-end direction to a leaky capper that allows barbed-end elongation and efficient nucleation of actin filaments from actin monomers bound to profilin. Another exciting feature of AFH1 is its ability to bind to the side and bundle actin filaments. We have identified an actin nucleator that is able to organize actin filaments directly into unbranched actin filament bundles. We suggest that AFH1 plays a central role in the initiation and organization of actin cables from the pool of actin monomers bound to profilin.
SummaryActin filaments assemble into a variety of networks to provide force for diverse cellular processes [1]. Tropomyosins are coiled-coil dimers that form head-to-tail polymers along actin filaments and regulate interactions of other proteins, including actin-depolymerizing factor (ADF)/cofilins and myosins, with actin [2, 3, 4, 5]. In mammals, >40 tropomyosin isoforms can be generated through alternative splicing from four tropomyosin genes. Different isoforms display non-redundant functions and partially non-overlapping localization patterns, for example within the stress fiber network [6, 7]. Based on cell biological studies, it was thus proposed that tropomyosin isoforms may specify the functional properties of different actin filament populations [2]. To test this hypothesis, we analyzed the properties of actin filaments decorated by stress-fiber-associated tropomyosins (Tpm1.6, Tpm1.7, Tpm2.1, Tpm3.1, Tpm3.2, and Tpm4.2). These proteins bound F-actin with high affinity and competed with α-actinin for actin filament binding. Importantly, total internal reflection fluorescence (TIRF) microscopy of fluorescently tagged proteins revealed that most tropomyosin isoforms cannot co-polymerize with each other on actin filaments. These isoforms also bind actin with different dynamics, which correlate with their effects on actin-binding proteins. The long isoforms Tpm1.6 and Tpm1.7 displayed stable interactions with actin filaments and protected filaments from ADF/cofilin-mediated disassembly, but did not activate non-muscle myosin IIa (NMIIa). In contrast, the short isoforms Tpm3.1, Tpm3.2, and Tpm4.2 displayed rapid dynamics on actin filaments and stimulated the ATPase activity of NMIIa, but did not efficiently protect filaments from ADF/cofilin. Together, these data provide experimental evidence that tropomyosin isoforms segregate to different actin filaments and specify functional properties of distinct actin filament populations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.