Acquiring knowledge from continuous and heterogeneous data streams is a prerequisite for IoT applications. Semantic technologies provide comprehensive tools and applicable methods for representing, integrating, and acquiring knowledge. However, resource-constraints, dynamics, mobility, scalability, and real-time requirements introduce challenges for applying these methods in IoT environments. We study how to utilize semantic IoT data for reasoning of actionable knowledge by applying state-of-the-art semantic technologies. For performing these studies, we have developed a semantic reasoning system operating in a realistic IoT environment. We evaluate the scalability of different reasoning approaches, including a single reasoner, distributed reasoners, mobile reasoners, and a hybrid of them. We evaluate latencies of reasoning introduced by different semantic data formats. We verify the capabilities of promising semantic technologies for IoT applications through comparing the scalability and real-time response of different reasoning approaches with various semantic data formats. Moreover, we evaluate different data aggregation strategies for integrating distributed IoT data for reasoning processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.