Interactions between the prefrontal cortex and amygdala are thought to be critical for reward anticipation. Alterations in reward anticipation that lead to an inability to wait for rewards or a diminished capacity to change behavior when doing so would be optimal is often termed impulsivity and compulsivity, respectively. Distinct regions of the prefrontal cortex may support decreased impulsivity through self-control and decreased compulsivity through flexibility. However, both self-control and flexibility appear to involve the amygdala. Using a delay discounting paradigm, the present investigation found that inactivation and disconnection of the medial prefrontal cortex and basolateral amygdala led rats to become more impulsive by affecting preference for smaller immediate over larger delayed rewards. Conversely, inactivation and disconnection of the orbitofrontal cortex and amygdala led rats to become more compulsive as demonstrated by an inability to flexibly reverse stimulus reward relationships in an odor reversal task. The present findings support a double dissociation between orbitofrontal cortex - amygdala interactions for odor reversal and medial prefrontal cortex - amygdala interactions for delay discounting.
A critical feature of episodic memory is the ability to remember the order of events as they occurred in time, a capacity shared across species including humans, nonhuman primates, and rodents. Accumulating evidence suggests that this capacity depends on a network of structures including the hippocampus and the prefrontal cortex, but their respective contributions remain poorly understood. As addressing this important issue will require converging evidence from complementary investigative techniques, we developed a cross-species, nonspatial sequence memory task suitable for behavioral and neurophysiological studies in rodents and in humans. The task involves the repeated presentation of sequences of items (odors in rats and images in humans) and requires subjects to make a judgment as to whether each item is presented "in sequence" or "out of sequence." To shed light on the cognitive processes and sequence representations supporting performance, different types of "out of sequence" probe trials were used including: (i) repeating an item from earlier in the sequence (Repeats; e.g., ABAD), (ii) skipping ahead in the sequence (Skips; e.g., ABD), and (iii) inserting an item from a different sequence into the same ordinal position (Ordinal Transfers; e.g., A2CD). We found a remarkable similarity in the performance of rats and humans, particularly in the pattern of results across probe trial types. Thus, the results suggest that rats and humans not only remember the sequences of events, but also use similar underlying cognitive processes and mnemonic representations. This strong cross-species correspondence validates this task for use in future basic and clinical interdisciplinary studies aimed at examining the neural mechanisms underlying episodic memory. V C 2014 Wiley Periodicals, Inc.
The hippocampus (HPP) plays a known role in learning novel spatial information. More specifically, the dentate gyrus (DG) hippocampal subregion is thought to support pattern separation, a mechanism for encoding and separating spatially similar events into distinct representations. Several studies have shown that lesions of the dorsal DG (dDG) in rodents result in inefficient spatial pattern separation for working memory; however, it is unclear whether selective dDG lesions disrupt spatial pattern separation for reference memory. Therefore, the current study investigated the role of the dDG in pattern separation using a spatial reference memory paradigm to determine whether the dDG is necessary for acquiring spatial discriminations for adjacent locations. Male Long-Evans rats were randomly assigned to receive bilateral intracranial infusions of colchicine or saline (control) into the dDG. Following recovery from surgery, each rat was pseudo-randomly assigned to an adjacent arm or separate arm condition and subsequently tested on a place-learning task using an eight-arm radial maze. Rats were trained to discriminate between a rewarded arm and a nonrewarded arm that were either adjacent to one another or separated by a distance of two arm positions. Each rat received 10 trials per day and was tested until the animal reached a criterion of nine correct choices out of 10 consecutive trials across 2 consecutive days of testing. Both groups acquired spatial discriminations for the separate condition at similar rates. However, in the adjacent condition, dDG lesioned animals required significantly more trials to reach the learning criterion than controls. The results suggest that dDG lesions decrease efficiency in pattern separation resulting in impairments in the adjacent condition involving greater overlap among the distal cues. Conversely, in the separate condition, there was less overlap among distal cues during encoding and less need for pattern separation. These findings provide further support for a critical role for the dDG in spatial pattern separation by demonstrating the importance of a processing mechanism that is capable of reducing interference among overlapping spatial inputs across a variety of memory demands.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.