Pathogen adaptation has been proposed to contribute to the resurgence of pertussis. A striking recent example is the emergence of isolates deficient in the vaccine component pertactin (Prn). This study explores the emergence of such Prn-deficient isolates in six European countries. During 2007 to 2009, 0/83 isolates from the Netherlands, 0/18 from the United Kingdom, 0/17 Finland, 0/23 Denmark, 4/99 Sweden and 5/20 from Norway of the isolates collected were Prn-deficient. In the Netherlands and Sweden, respectively 4/146 and 1/8 were observed in a later period (2010-12). The Prn-deficient isolates were genetically diverse and different mutations were found to inactivate the prn gene. These are indications that Prn-deficiency is subject to positive selective pressure. We hypothesise that the switch from whole cell to acellular pertussis vaccines has affected the balance between 'costs and benefits' of Prn production by Bordetella pertussis to the extent that isolates that do not produce Prn are able to expand. The absence of Prn-deficient isolates in some countries may point to ways to prevent or delay the spread of Prn-deficient strains. In order to substantiate this hypothesis, trends in the European B. pertussis population should be monitored continuously.
Competitive interactions between pathogen strains drive infection risk. Vaccines are thought to perturb strain diversity through shifts in immune pressures, however, this has rarely been measured due to inadequate data and analytical tools. Bordetella pertussis (B. pertussis), responsible for 160,000 deaths annually1, provides a rare natural experiment as many countries have switched from whole cell vaccines to acellular vaccines, which have very different immunogenic properties2,3. Here we use 3,344 sequences from 23 countries and build phylogenetic models to reveal that B. pertussis has substantial diversity within communities, with the relative fitness of local genotypes changing in response to switches in vaccine policy. We demonstrate that the number of transmission chains circulating within subnational regions is strongly associated with host population size. It takes 5-10 years for individual lineages to be homogeneously distributed throughout Europe or the United States. Increased fitness of pertactin-deficient strains following implementation of acellular vaccines, but reduced fitness otherwise, can explain long-term genotype dynamics. These findings highlight the role of national vaccine policies in shifting local diversity of a pathogen that still poses a large burden on global public health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.