SUMMARY Acute myeloid leukemia (AML) manifests as phenotypically and functionally diverse cells, often within the same patient. Intratumor phenotypic and functional heterogeneity have been linked primarily by physical sorting experiments, which assume that functionally distinct subpopulations can be prospectively isolated by surface phenotypes. This assumption has proven problematic and we therefore developed a data-driven approach. Using mass cytometry, we profiled surface and intracellular signaling proteins simultaneously in millions of healthy and leukemic cells. We developed PhenoGraph, which algorithmically defines phenotypes in high-dimensional single-cell data. PhenoGraph revealed that the surface phenotypes of leukemic blasts do not necessarily reflect their intracellular state. Using hematopoietic progenitors, we defined a signaling-based measure of cellular phenotype, which led to isolation of a gene expression signature that was predictive of survival in independent cohorts. This study presents new methods for large-scale analysis of single-cell heterogeneity and demonstrates their utility, yielding insights into AML pathophysiology.
Infant acute lymphoblastic leukemia (ALL) with MLL rearrangements (MLL-R) represents a distinct leukemia with a poor prognosis. To define its mutational landscape, we performed whole genome, exome, RNA and targeted DNA sequencing on 65 infants (47 MLL-R and 18 non-MLL-R) and 20 older children (MLL-R cases) with leukemia. Our data demonstrated infant MLL-R ALL to have one of the lowest frequencies of somatic mutations of any sequenced cancer, with the predominant leukemic clone carrying a mean of 1.3 non-silent mutations. Despite the paucity of mutations, activating mutations in kinase/PI3K/RAS signaling pathways were detected in 47%. Surprisingly, however, these mutations were often sub-clonal and frequently lost at relapse. In contrast to infant cases, MLL-R leukemia in older children had more somatic mutations (a mean of 6.5/case versus 1.3/case, P=7.15×10−5) and contained frequent mutations (45%) in epigenetic regulators, a category of genes that with the exception of MLL was rarely mutated in infant MLL-R ALL.
SUMMARY To define the mutation spectrum in non-Down syndrome acute megkaryoblastic leukemia (non-DS-AMKL), we performed transcriptome sequencing on diagnostic blasts from 14 pediatric patients and validated our findings in a recurrency/validation cohort consisting of 34 pediatric and 28 adult AMKL leukemia samples. Our analysis identified a cryptic chromosome 16 inversion [inv(16)(p13.3q24.3)] in 27% of pediatric cases, which encodes a CBFA2T3-GLIS2 fusion protein. Expression of CBFA2T3-GLIS2 in Drosophila and murine hematopoietic cells induced bone morphogenic protein (BMP) signaling, and resulted in a marked increase in the self-renewal capacity of hematopoietic progenitors. These data suggest that expression of CBFA2T3-GLIS2 directly contributes to leukemogenesis.
Here we sequence 633 genes, encoding the majority of known epigenetic regulatory proteins, in over 1000 pediatric tumors to define the landscape of somatic mutations in epigenetic regulators in pediatric cancer. Our results demonstrate a marked variation in the frequency of gene mutations across 21 different pediatric cancer subtypes, with the highest frequency of mutations detected in high-grade gliomas, T-lineage acute lymphoblastic leukemia, medulloblastoma, and a paucity of mutations in low-grade glioma, and retinoblastoma. The most frequently mutated genes are H3F3A, PHF6, ATRX, KDM6A, SMARCA4, ASXL2, CREBBP, EZH2, MLL2, USP7, ASXL1, NSD2, SETD2, SMC1A, and ZMYM3. Importantly, we identify novel loss-of-function mutations in the ubiquitin-specific-processing protease 7 (USP7) in pediatric leukemia, which result in a decrease in deubiquitination activity. Collectively, our results help to define the landscape of mutations in epigenetic regulatory genes in pediatric cancer and yield a valuable new database for investigating the role of epigenetic dysregulations in cancer.
Acute myeloid leukemia (AML) comprises a heterogeneous group of leukemias frequently defined by recurrent cytogenetic abnormalities, including rearrangements involving subunits of the core-binding factor (CBF) transcriptional complex. To better understand the genomic landscape of CBF-AMLs, we analyzed both pediatric (n=87) and adult (n=78) samples, including cases with RUNX1-RUNX1T1 (n=85) or CBFB-MYH11 (n=80) rearrangements, by whole-genome or whole-exome sequencing. In addition to previously reported somatic mutations in the Ras signaling pathway, we identified recurrent stabilizing mutations in CCND2, suggesting a recurrent and previously unappreciated cooperating pathway in CBF-AML. Outside of signaling alterations, RUNX1-RUNX1T1 and CBFB-MYH11 AMLs demonstrated a remarkably different spectrum of cooperating mutations as RUNX1-RUNX1T1 cases harbored recurrent somatic mutations in DHX15 and ZBTB7A, as well as an enrichment of somatic mutations in epigenetic regulators, including ASXL2, and in components of the cohesin complex. This detailed analysis provides insights into the pathogenesis and development of CBF-AML, while highlighting dramatic differences in the landscape of cooperating mutations between these related AML subtypes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.