In 2019, >90% of new HIV infections in infants globally occurred vertically. Studies suggest intrauterine transmission most often occurs in the third trimester; however, there are no mechanistic studies to support these observations. We therefore obtained early/mid-gestation and term placentae from 20 HIV/Hepatitis B/CMV negative women. Isolated primary placental macrophages (Hofbauer cells [HCs]) were exposed to HIV-1BaL and/or interferon (IFN)-α, IFN-β, IFN-λ1, and RIG-I-like receptor (RLR) agonists. qRT-PCR, FACS, ELISA, Luminex, and Western blot analyses determined expression of activation markers, co-receptors, viral antigen, cytokines, antiviral genes, and host proteins. Early gestation HCs express higher levels of CCR5 and exhibit a more activated phenotype. Despite downregulation of CCR5, term HCs were more susceptible to HIV replication. Early gestation HCs displayed a more activated phenotype than term HCs and HIV exposure lead to the further up-regulation of T-cell co-stimulatory and MHC molecules. Limited HIV replication in early/mid gestation HCs was associated with increased secretion of anti-inflammatory cytokines, chemokines, and a more robust antiviral immune response. In contrast, term HCs were more susceptible to HIV replication, associated with dampening of IFN-induced STAT1 and STAT2 protein activation. Treatment of early/mid gestation and term HCs, with type I IFNs or RLR agonists reduced HIV replication, underscoring the importance of IFN and RLR signaling in inducing an antiviral state. Viral recognition and antiviral immunity in early gestation HCs may prevent in utero HIV infection, whereas diminished antiviral responses at term can facilitate transmission. Defining mechanisms and specific timing of vertical transmission are critical for the development of specific vaccines and antiviral therapeutics to prevent new HIV infections in children globally.
In humans, the hemochorial placenta is a unique temporary organ that forms during pregnancy to support fetal development, gaseous exchange, delivery of nutrition, removal of waste products, and provides immune protection, while maintaining tolerance to the HLA-haploidentical fetus. In this review, we characterize decidual and placental immunity during maternal viral (co)-infection with HIV-1, human cytomegalovirus (HCMV), and Zika virus. We discuss placental immunology, clinical presentation, and epidemiology, before characterizing host susceptibility and cellular tropism, and how the three viruses gain access into specific placental target cells. We describe current knowledge on host-viral interactions with decidual and stromal human placental macrophages or Hofbauer cells, trophoblasts including extra villous trophoblasts, T cells, and decidual natural killer (dNK) cells. These clinically significant viral infections elicit both innate and adaptive immune responses to control replication. However, the three viruses either during mono- or co-infection (HIV-1 and HCMV) escape detection to initiate placental inflammation associated with viral transmission to the developing fetus. Aside from congenital or perinatal infection, other adverse pregnancy outcomes include preterm labor and spontaneous abortion. In addition, maternal HIV-1 and HCMV co-infection are associated with impaired fetal and infant immunity in postnatal life and poor clinical outcomes during childhood in exposed infants, even in the absence of vertical transmission of HIV-1. Given the rapidly expanding numbers of HIV-1-exposed uninfected infants and children globally, further research is urgently needed on neonatal immune programming during maternal mono-and co-infection. This review therefore includes sections on current knowledge gaps that may prompt future research directions. These gaps reflect an emerging but poorly characterized field. Their significance and potential investigation is underscored by the fact that although viral infections result in adverse consequences in both mother and developing fetus/newborn, antiviral and immunomodulatory therapies can improve clinical outcomes in the dyad.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.