Abstract-Diagrammatic techniques for reasoning about monoidal categories provide an intuitive understanding of the symmetries and connections of interacting computational processes. In the context of categorical quantum mechanics, Coecke and Kissinger suggested that two 3-qubit states, GHZ and W, may be used as the building blocks of a new graphical calculus, aimed at a diagrammatic classification of multipartite qubit entanglement that would highlight the communicational properties of quantum states, and their potential uses in cryptographic schemes.In this paper, we present a full graphical axiomatisation of the relations between GHZ and W: the ZW calculus. This refines a version of the preexisting ZX calculus, while keeping its most desirable characteristics: undirectedness, a large degree of symmetry, and an algebraic underpinning. We prove that the ZW calculus is complete for the category of free abelian groups on a power of two generators -"qubits with integer coefficients" -and provide an explicit normalisation procedure.
Poly-bicategories generalise planar polycategories in the same way as bicategories generalise monoidal categories. In a poly-bicategory, the existence of enough 2-cells satisfying certain universal properties (representability) induces coherent algebraic structure on the 2-graph of single-input, single-output 2-cells. A special case of this theory was used by Hermida to produce a proof of strictification for bicategories. No full strictification is possible for higher-dimensional categories, seemingly due to problems with 2-cells that have degenerate boundaries; it was conjectured by C. Simpson that semi-strictification excluding units may be possible. We study poly-bicategories where 2-cells with degenerate boundaries are barred, and show that we can recover the structure of a bicategory through a different construction of weak units. We prove that the existence of these units is equivalent to the existence of 1-cells satisfying lower-dimensional universal properties, and study the relation between preservation of units and universal cells. Then, we introduce merge-bicategories, a variant of poly-bicategories with more composition operations, which admits a natural monoidal closed structure, giving access to higher morphisms. We derive equivalences between morphisms, transformations, and modifications of representable merge-bicategories and the corresponding notions for bicategories. Finally, we prove a semi-strictification theorem for representable mergebicategories with a choice of composites and units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.