If molecular components are to be used as functional elements in place of the semiconductor-based devices present in conventional microcircuitry, they must compete with semiconductors under the extreme conditions required for processing and operating a practical device. Herein, we demonstrate that porphyrin-based molecules bound to Si(100), which exhibit redox behavior useful for information storage, can meet this challenge. These molecular media in an inert atmosphere are stable under extremes of temperature (400 degrees C) for extended periods (approaching 1 hour) and do not degrade under large numbers of read-write cycles (10(12)).
Monolayers of two classes of Zn porphyrins have been prepared and examined on Si(100). These molecules, designated as ZnPBzX- and ZnPCH2X-, contain either a benzyl (-Bz-) or a methylene (-CH2-) unit terminated with a Group VI atom (X = O, S, Se) appended to a meso-position of the porphyrin, with the nonlinking meso-substituents consisting of either mesityl (-Bz- class) or p-tolyl and phenyl (-CH2- class) units. The two series of ZnPBzX- and ZnPCH2X- monolayers on Si(100) were examined using a variety of techniques, including X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and various electrochemical methods. The studies reveal the following characteristics of the ZnPBzX- and ZnPCH2X- monolayers. (1) Surface binding can be readily achieved to Si(100) with both relatively short (-Bz-) and very short (-CH2-) tethers regardless of the nature of the Group VI anchoring atom (O, S, Se). (2) The longer -Bz- tether affords monolayers with the porphyrin ring in a somewhat more upright orientation with respect to the surface than the shorter -CH2- tether. The more upright adsorption geometry of the porphyrins bearing the former type of linker leads to a higher packing density and more homogeneous redox thermodynamics. (3) The kinetics of electron transfer does not depend on the type of Group VI atom used for anchoring to the Si(100) surface. On the other hand, the type of linker does affect the electron-transfer rates, with the monolayers bearing the -CH2- linker exhibiting systematically faster rates than those bearing the -Bz- linker. Collectively, the studies reported herein provide a detailed picture of how the anchor atom and the linker type influence the structural and electron-transfer characteristics of these general classes of monolayers.
A series of multithiol-functionalized zinc porphyrins has been prepared and characterized as self-assembled monolayers (SAMs) on Au. The molecules, designated ZnPS(n) (n = 1-4), contain from one to four [(S-acetylthio)methyl]phenylethynylphenyl groups appended to the meso-position of the porphyrin; the other meso-substituents are phenyl groups. For the dithiol-functionalized molecules, both the cis- and the trans-appended structures were examined. The ZnPS(n) SAMs were investigated using X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and various electrochemical methods. The studies reveal the following characteristics of the ZnPS(n) SAMs. (1) The ZnPS(n) molecules bind to the Au surface via a single thiol regardless of the number of thiol appendages that are available per molecular unit. (2) The porphyrins in the ZnPS(3) and ZnPS(4) SAMs bind to the surface in a more upright orientation than the porphyrins in the ZnPS(1), cis-ZnPS(2), and trans-ZnPS(2) SAMs. The porphyrins in the ZnPS(3) and ZnPS(4) SAMs are also more densely packed than those in the cis-ZnPS(2) and trans-ZnPS(2) SAMs. The packing density of the ZnPS(3) and ZnPS(4) SAMs is similar to that of the ZnPS(1) SAMs, despite the larger size of the molecules in the former SAMs. (3) The thermodynamics and kinetics of electron transfer are generally similar for all of the ZnPS(n) SAMs. The general similarities in the electron-transfer characteristics for all of the SAMs are attributed to the similar binding motif.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.