Per- and poly-fluoroalkyl substances (PFASs) have recently been labeled as toxic constituents that exist in many aqueous environments. However, traditional methods used to determine the level of PFASs are often not appropriate for continuous environmental monitoring and management. Based on the current state of research, PFAS-detecting sensors have surfaced as a promising method of determination. These sensors are an innovative solution with characteristics that allow for in situ, low-cost, and easy-to-use capabilities. This paper presents a comprehensive review of the recent developments in PFAS-detecting sensors, and why the literature on determination methods has shifted in this direction compared to the traditional methods used. PFAS-detecting sensors discussed herein are primarily categorized in terms of the detection mechanism used. The topics covered also include the current limitations, as well as insight on the future direction of PFAS analyses. This paper is expected to be useful for the smart sensing technology development of PFAS detection methods and the associated environmental management best practices in smart cities of the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.