Recognition and segmentation of objects in images enjoy the wealth of large volume of well annotated data. At the other end, when dealing with the reconstruction of geometric structures of objects from images, there is a limited amount of accurate data available for supervised learning. One type of such geometric data with insufficient amount required for deep learning is real world accurate RGB-D images. The lack of accurate RGB-D datasets is one of the obstacles in the evolution of geometric scene reconstructions from images. One solution to creating such a dataset is to capture RGB images while simultaneously using an accurate depth scanning device that assigns a depth value to each pixel. A major challenge in acquiring such ground truth data is the accurate alignment between the RGB images and the measured depth and color profiles. In this paper, we introduce a differential optimization method that aligns a colored point cloud to a given color image via iterative geometric and color matching. The proposed method enables the construction of RGB-D datasets for specific camera systems such as shape from stereo. In the suggested framework, the optimization minimizes the difference between the colors of the image pixels and the corresponding colors of the projected points to the camera plane. We assume that the colors produced by the geometric scanner camera and the color camera sensor are different and thus are characterized by different chromatic acquisition properties. We align the different color spaces while compensating for their corresponding color appearance. Under this setup, we find the transformation between the camera image and the point cloud colors by iterating between matching the relative location of the point cloud and matching colors. The successful alignments produced by the proposed method are demonstrated on both synthetic data with quantitative evaluation and real world scenes with qualitative results.
Depth estimation is a cornerstone of a vast number of applications requiring 3D assessment of the environment, such as robotics, augmented reality, and autonomous driving to name a few. One prominent technique for depth estimation is stereo matching which has several advantages: it is considered more accessible than other depth-sensing technologies, can produce dense depth estimates in realtime, and has benefited greatly from the advances of deep learning in recent years. However, current techniques for depth estimation from stereoscopic images still suffer from a built-in drawback. To reconstruct depth, a stereo matching algorithm first estimates the disparity map between the left and right images before applying a geometric triangulation. A simple analysis reveals that the depth error is quadratically proportional to the object's distance. Therefore, constant disparity errors are translated to large depth errors for objects far from the camera. To mitigate this quadratic relation, we propose a simple but effective method that uses a refinement network for depth estimation. We show analytical and empirical results suggesting that the proposed learning procedure reduces this quadratic relation. We evaluate the proposed refinement procedure on well-known benchmarks and datasets, like Sceneflow and KITTI datasets, and demonstrate significant improvements in the depth accuracy metric.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.