Considering the need of applicability of green chemistry in research, a series of heterogeneous catalysts, viz., sulfated iron oxide, zirconia supported tungstophosphoric acid and sulfated zirconia have been synthesized by a solvent-free method. The prepared catalysts were used in the esterification of nonanoic acid with methanol and were compared with ion exchange resins for the assessment of their catalytic performance. Sulfated iron oxide was found to be best with an acid conversion of 83%, which is quite comparable with Amberlyst 15 and Dowex50Wx2. The high catalyst loading, cost, low thermal stability, and long reaction time make ion exchange resins uneconomical to use over other alternatives that result in same efficiency with low cost. Sulfated iron oxide was further optimized for its preparation conditions for high catalytic performance in the esterification reaction. The catalysts were characterized for their crystallinity, surface morphology, composition, weight loss, and structure by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, thermogravimetric analysis, and Fourier transform infrared spectroscopy. The evaluated catalysts were compared on the basis of their preparation time, catalytic performance, catalyst loading, reaction time, and overall cost.
In the present study, the application of sequential biological and photocatalytic process was evaluated as a feasible process for the degradation of imidacloprid (IMI) in soil. Photocatalysis was carried out as a post and pre-treatment to the biological process as Microbial Photocatalytic (MP) and Photocatalytic Microbial (PM), respectively, to enhance the degradation and mineralization of IMI in soil. By both the processes, there was an enhancement in the percentage degradation of IMI i.e 86.2% for PM and 94.6% for MP process. The obtained results indicate that MP process is apparently more efficient in degradation of IMI which was observed with 15 days of biological treatment followed by 18 h of photocatalytic degradation (15 d + 18 h). The present work also reveals that though the difference in terms of the degradation of IMI after 5 d + 18 h, 10 d + 18 h & 15 d+ 18 h of MP process is not drastic, yet significant variation has been observed in terms of mineralization that truly signifies the removal of IMI from the soil. The LC analysis has shown that the intermediates formed during MP process are more and smaller in comparison to PM process, which further provides evidence that MP process is better than PM process for effective degradation of IMI in soil.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.