Rod and cone photoreceptor-specific tests can be time-consuming. A new non-invasive test is described. The test is based on the measurement of flicker modulation thresholds with rod-and cone-enhanced visual stimuli, which requires only minimum adaptation time. Here, we investigated how the rod-and cone-mediated flicker thresholds vary with age. Methods Monocular thresholds with rod and cone-enhanced stimuli were measured in 140 healthy adults, (age range: 18-75 years), foveally (0˚) and at four parafoveal locations, at an eccentricity of 5˚in each of the four quadrants using five, adaptive, interleaved staircases. Temporal frequencies, stimulus sizes, background luminance and spectral composition, were adjusted appropriately to achieve approximately 1 log unit separation in sensitivity between the rod-and cone-enhanced stimuli. Spectrally calibrated, 'neutral density' filters were used to enable adequate control of display luminance for rod enhanced stimuli. Results The magnitude of central and parafoveal rod thresholds was significantly higher than the central and parafoveal cone thresholds, respectively (p < 0.001) in both the age groups. However, the rate of increase in central rod thresholds (y = 0.45x-12.79; linear regression equation) was not significantly steeper than the rate of increase in central (y = 0.29x-8.53) cone thresholds (p = 0.15). Centrally, cone thresholds showed a better correlation with rod central thresholds for the age > 45 years (Spearman correlation, ρ = 0.74, p < 0.001) compared to age � 45 years (ρ = 0.41, p < 0.001). Conclusions Thresholds with rod-and cone-enhanced stimuli are largely invariant below 45 years of age and increase rapidly above this age. This age-wise normative database can be used as an effective functional-marker to assess photoreceptor sensitivities in retinal diseases.
The agreement between the TACs and GT in adults and infants validates the method of measuring grating acuity with the remote GT. These results demonstrate its potential for an automated test of infant VA.
We determined how rod signaling at mesopic light levels is altered by extrinsic temporal white noise that is correlated or uncorrelated with the activity of one (magnocellular, parvocellular, or koniocellular) postreceptoral pathway. Rod and cone photoreceptor excitations were independently controlled using a four-primary photostimulator. Psychometric (Weibull) functions were measured for incremental rod pulses (50 to 250 ms) in the presence (or absence; control) of perceptually invisible subthreshold extrinsic noise. Uncorrelated (rod) noise facilitates rod detection. Correlated postreceptoral pathway noise produces differential changes in rod detection thresholds and decreases the slope of the psychometric functions. We demonstrate that invisible extrinsic noise changes rod-signaling characteristics within the three retinogeniculate pathways at mesopic illumination depending on the temporal profile of the rod stimulus and the extrinsic noise type.
Spot-the-difference, the popular childhood game and a prototypical change blindness task, involves identification of differences in local features of two otherwise identical scenes using an eye scanning and matching strategy. Through binocular fusion of the companion scenes, the game becomes a visual search task, wherein players can simply scan the cyclopean percept for local features that may distinctly stand-out due to binocular rivalry/lustre. Here, we had a total of 100 visually normal adult (18–28 years of age) volunteers play this game in the traditional non-fusion mode and after cross-fusion of the companion images using a hand-held mirror stereoscope. The results demonstrate that the fusion mode significantly speeds up gameplay and reduces errors, relative to the non-fusion mode, for a range of target sizes, contrasts, and chromaticity tested (all, p<0.001). Amongst the three types of local feature differences available in these images (polarity difference, presence/absence of a local feature difference and shape difference in a local feature difference), features containing polarity difference was identified as first in ~60–70% of instances in both modes of gameplay (p<0.01), with this proportion being larger in the fusion than in the non-fusion mode. The binocular fusion advantage is lost when the lustre cue is purposefully weakened through alterations in target luminance polarity. The spot-the-difference game may thus be cheated using binocular fusion and the differences readily identified through a vivid experience of binocular rivalry/lustre.
This new technique will enable recording of intrinsic noise in ERG signals above and below perceptual visual threshold and is suitable for measurement of continuous rod and cone ERGs across a range of temporal frequencies, and post-receptoral processing in the primary retinogeniculate pathways at low stimulus contrasts. The intrinsic noise distribution may have application as a biomarker for detecting changes in disease progression or treatment efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.