Abstract-We have observed recently that experimental renal failure in the rat is accompanied by increases in circulating concentrations of the cardiotonic steroid, marinobufagenin (MBG), and substantial cardiac fibrosis. We performed the following studies to examine whether MBG might directly stimulate cardiac fibroblast collagen production. In vivo studies were performed using the 5/6th nephrectomy model of experimental renal failure (PNx), MBG infusion (MBG), PNx after immunization against MBG, and concomitant PNx and adrenalectomy. Physiological measurements with a Millar catheter and immunohistochemistry were performed. In vitro studies were then pursued with cultured isolated cardiac fibroblasts. We observed that PNx and MBG increased MBG levels, blood pressure, heart size, impaired diastolic function, and caused cardiac fibrosis. PNx after immunization against MBG and concomitant PNx and adrenalectomy had similar blood pressure as PNx but less cardiac hypertrophy, diastolic dysfunction, and cardiac fibrosis. MBG induced increases in procollagen-1 expression by cultured cardiac fibroblasts at 1 nM concentration. These increases in procollagen expression were accompanied by increases in collagen translation and increases in procollagen-1 mRNA without any demonstrable increase in procollagen-1 protein stability. The stimulation of fibroblasts with MBG could be prevented by administration of inhibitors of tyrosine phosphorylation, Src activation, epidermal growth factor receptor transactivation, and N-acetyl cysteine. Based on these findings, we propose that MBG directly induces increases in collagen expression by fibroblasts, and we suggest that this may be important in the cardiac fibrosis seen with experimental renal failure. (Hypertension. 2007;49:215-224.)
The cardiotonic steroid marinobufagenin (MBG) has been implicated in the pathogenesis of experimental uremic cardiomyopathy, which is characterized by progressive cardiac fibrosis. We examined whether the transcription factor Friend leukemia integration-1 (Fli-1) might be involved in this process. Fli-1-knockdown mice demonstrated greater cardiac collagen-1 expression and fibrosis compared with wild-type mice; both developed increased cardiac collagen expression and fibrosis after 5/6 nephrectomy. There was a strong inverse relationship between the expressions of Fli-1 and procollagen in primary culture of rat cardiac and human dermal fibroblasts as well as a cell line derived from renal fibroblasts and MBG-induced decreases in nuclear Fli-1 as well as increases in procollagen-1 expression in these cells. Transfection of a Fli-1 expression vector prevented increased procollagen-1 expression from MBG. MBG exposure induced a rapid translocation of the δ-isoform of protein kinase C (PKCδ) to the nucleus. This translocation was prevented by pharmacological inhibition of phospholipase C, and MBG-induced increases in procollagen-1 expression were prevented with a PKCδ- but not a PKCα-specific inhibitor. Finally, immunoprecipitation studies strongly suggest that MBG induced phosphorylation of Fli-1. We feel these data support a causal relationship with MBG-induced translocation of PKCδ, which results in phosphorylation of as well as decreases in nuclear Fli-1 expression, which, in turn, leads to increases in collagen production. Should these findings be confirmed, we speculate that this pathway may represent a therapeutic target for uremic cardiomyopathy as well as other conditions associated with excessive fibrosis.
Because of the plethora of genetic manipulations available in the mouse, we performed a partial nephrectomy in the mouse and examined whether the phenotypical features of uremic cardiomyopathy described in humans and rats were also present in the murine model. A 5/6 nephrectomy was performed using a combination of electrocautory to decrease renal mass on the left kidney and right surgical nephrectomy. This procedure produced substantial and persistent hypertension as well as increases in circulating concentrations of marinobufagenin. Invasive physiological measurements of cardiac function demonstrated that the 5/6 nephrectomy resulted in impairment of both active and passive left ventricular relaxation at 4 wk whereas tissue Doppler imaging detected changes in diastolic function after 6 wk. Morphologically, hearts demonstrated enlargement and progressive fibrosis, and biochemical measurements demonstrated downregulation of the sarcoplasmic reticulum calcium ATPase as well as increases in collagen-1, fibronectin, and vimentin expression. Our results suggest that partial nephrectomy in the mouse establishes a model of uremic cardiomyopathy which shares phenotypical features with the rat model as well as patients with chronic renal failure.
Background Cardiotonic steroids (CTS) are implicated in pathophysiology of uremic cardiomyopathy. In the present study, we tested whether a monoclonal antibody (mAb) against the bufadienolide CTS, marinobufagenin (MBG), alleviates cardiac hypertrophy and fibrosis in partially nephrectomized (PNx) rats. Methods In PNx rats, we compared the effects of 3E9 anti-MBG mAb and of Digibind, an affinity-purified digoxin antibody, on blood pressure and cardiac hypertrophy and fibrosis following 4 weeks after the surgery. Results In PNx rats, a four-fold elevation in plasma MBG levels was associated with hypertension, increased cardiac levels of carbonylated protein, cardiac hypertrophy, a reduction in cardiac expression of a nuclear transcription factor which is a negative regulator of collagen synthesis, Fli-1, and an increase in the levels of collagen-1. A single intraperitoneal administration of 3E9 mAb to PNx rats reduced blood pressure by 59 mmHg for 7 days and produced a significant reduction in cardiac weight and cardiac levels of oxidative stress, an increase in the expression of Fli-1, and a reduction in cardiac fibrosis. The effects of Digibind were similar to those of 3E9 mAb, but were less pronounced. Conclusions In experimental chronic renal failure, elevated levels of MBG contribute to hypertension and induce cardiac fibrosis via suppression of Fli-1, representing a potential target for therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.