In this paper, the virtual machine placement problem is formulated as a multi-objective optimization problem. The objectives are maximizing profit, maximizing load balancing and minimizing recourse wastage. Results of Genetic algorithms, Non-dominated Sorting Genetic Algorithm and Non-dominated Sorting Genetic Algorithm-II are compared with common solution representation, penalty and benefit values. All the three algorithms reported good solutions whereas GA and NSGA are subjected to premature convergence and duplicate solutions. NSGA-II gives good and diversified range of solutions.
Paper presents application of convolutional neural network for image classification problem. MNIST and Fashion-MNIST datasets used to test the performance of CNN model. Paper presents five different architectures with varying convolutional layers, filter size and fully connected layers. Experiments conducted with varying hyper-parameters namely activation function, optimizer, learning rate, dropout rate and batch size. Results show that selection of activation function, optimizer and dropout rate has impact on accuracy of results. All architectures give accuracy more than 99% for MNIST dataset. Fashion-MNIST dataset is complex than MNIST. For Fashion-MNIST dataset architecture 3 gives better results. Review of obtained results and from literature shows that CNN is suitable for image classification for MNIST and Fashion-MNIST dataset.
Malware is a threat to people in the cyber world. It steals personal information and harms computer systems. Various developers and information security specialists around the globe continuously work on strategies for detecting malware. From the last few years, machine learning has been investigated by many researchers for malware classification. The existing solutions require more computing resources and are not efficient for datasets with large numbers of samples. Using existing feature extractors for extracting features of images consumes more resources. This paper presents a Convolutional Neural Network model with pre-processing and augmentation techniques for the classification of malware gray-scale images. An investigation is conducted on the Malimg dataset, which contains 9339 gray-scale images. The dataset created from binaries of malware belongs to 25 different families. To create a precise approach and considering the success of deep learning techniques for the classification of raising the volume of newly created malware, we proposed CNN and Hybrid CNN+SVM model. The CNN is used as an automatic feature extractor that uses less resource and time as compared to the existing methods. Proposed CNN model shows (98.03%) accuracy which is better than other existing CNN models namely VGG16 (96.96%), ResNet50 (97.11%) InceptionV3 (97.22%), Xception (97.56%). The execution time of the proposed CNN model is significantly reduced than other existing CNN models. The proposed CNN model is hybridized with a support vector machine. Instead of using Softmax as activation function, SVM performs the task of classifying the malware based on features extracted by the CNN model. The proposed fine-tuned model of CNN produces a well-selected features vector of 256 Neurons with the FC layer, which is input to SVM. Linear SVC kernel transforms the binary SVM classifier into multi-class SVM, which classifies the malware samples using the one-against-one method and delivers the accuracy of 99.59%.
Abstract-Computational paradigm has been revolving round cloud computing and its offshoots for some time and till we see a breakout resulting in a breakthrough technology driven by advances in microelectronics and material technology. Till we experience a radically efficient technology for computation it is worth juxtaposing the virtues of cloud computing and market's longing for offering cost and quality arbitrage to the marketplace. Integration of cloud computing in enterprises has the potential to influence the way business gets carried out by them in the market place. Different reports show that demand for cloud computing products and processes is in an upward growth trajectory. This paper identified the characteristics, drivers and constraints of cloud computing which influence its adaptation and integration in enterprises. We are also examining India specific opportunities and threats of cloud computing tools and cloud driven practices in the context of fierce competition among enterprises to remain competitive in the marketplace by reducing software licensing fees, cost of capital to acquire digital systems and cost of maintenances.New directions in cloud computing are analyzed by using Gartner strategic technologies and trend in research publications. Paper focuses on exploring the research issues which are categorized into technical and business in nature for understanding the evolving fortunes of cloud computing. Number of papers published in IEEE is an indication of the popularity and relevance of the continued research initiatives happening in the area. It is also noticed that that very few researchers are attempting to understand the possibility of remodeling business processes leveraging the new found computational paradigm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.