Microbial communities are increasingly recognized as crucial for animal health. However, our understanding of how microbial communities are structured across wildlife populations is poor. Mechanisms such as interspecific associations are important in structuring free‐living communities, but we still lack an understanding of how important interspecific associations are in structuring gut microbial communities in comparison with other factors such as host characteristics or spatial proximity of hosts. Here, we ask how gut microbial communities are structured in a population of North American moose Alces alces. We identify key microbial interspecific associations within the moose gut and quantify how important they are relative to key host characteristics, such as body condition, for predicting microbial community composition. We sampled gut microbial communities from 55 moose in a population experiencing decline due to a myriad of factors, including pathogens and malnutrition. We examined microbial community dynamics in this population utilizing novel graphical network models that can explicitly incorporate spatial information. We found that interspecific associations were the most important mechanism structuring gut microbial communities in moose and detected both positive and negative associations. Models only accounting for associations between microbes had higher predictive value compared to models including moose sex, evidence of previous pathogen exposure or body condition. Adding spatial information on moose location further strengthened our model and allowed us to predict microbe occurrences with ~90% accuracy. Collectively, our results suggest that microbial interspecific associations coupled with host spatial proximity are vital in shaping gut microbial communities in a large herbivore. In this case, previous pathogen exposure and moose body condition were not as important in predicting gut microbial community composition. The approach applied here can be used to quantify interspecific associations and gain a more nuanced understanding of the spatial and host factors shaping microbial communities in non‐model hosts.
In the event of a foot-and-mouth disease (FMD) incursion, response strategies are required to control, contain, and eradicate the pathogen as efficiently as possible. Infectious disease simulation models are widely used tools that mimic disease dispersion in a population and that can be useful in the design and support of prevention and mitigation activities. However, there are often gaps in evidence-based research to supply models with quantities that are necessary to accurately reflect the system of interest. The objective of this study was to quantify values associated with the duration of the stages of FMD infection (latent period, subclinical period, incubation period, and duration of infection), probability of transmission (within-herd and between-herd via spatial spread), and diagnosis of a vesicular disease within a herd using a meta-analysis of the peer-reviewed literature and expert opinion. The latent period ranged from 1 to 7 days and incubation period ranged from 1 to 9 days; both were influenced by strain. In contrast, the subclinical period ranged from 0 to 6 days and was influenced by sampling method only. The duration of infection ranged from 1 to 10 days. The probability of spatial spread between an infected and fully susceptible swine farm was estimated as greatest within 5 km of the infected farm, highlighting the importance of possible long-range transmission through the movement of infected animals. Finally, while most swine practitioners are confident in their ability to detect a vesicular disease in an average sized swine herd, a small proportion expect that up to half of the herd would need to show clinical signs before detection via passive surveillance would occur. The results of this study will be useful in within- and between-herd simulation models to develop efficient response strategies in the event an FMD in swine populations of disease-free countries or regions.
Contact network analysis has become a vital tool for conceptualizing the spread of pathogens in animal populations and is particularly useful for understanding the implications of heterogeneity in contact patterns for transmission. However, the transmission of most pathogens cannot be simplified to a single mode of transmission and, thus, a single definition of contact. In addition, host-pathogen interactions occur in a community context, with many pathogens infecting multiple host species and most hosts being infected by multiple pathogens. Multilayer networks provide a formal framework for researching host-pathogen systems in which multiple types of transmission-relevant interactions, defined as network layers, can be analyzed jointly. Here, we provide an overview of multilayer network analysis and review applications of this novel method to epidemiological research questions. We then demonstrate the use of this technique to analyze heterogeneity in direct and indirect contact patterns amongst swine farms in the United States. When contact among nodes can be defined in multiple ways, a multilayer approach can advance our ability to use networks in epidemiological research by providing an improved approach for defining epidemiologically relevant groups of interacting nodes and changing the way we identify epidemiologically important individuals such as superspreaders.
1. Microbial communities are increasingly recognised as crucial for animal health.However, our understanding of how microbial communities are structured across wildlife populations is poor. Mechanisms such as interspecific associations are important in structuring free-living communities, but we still lack an understanding of how important interspecific associations are in structuring gut microbial communities in comparison to other factors such as host characteristics or spatial proximity of hosts.2. Here we ask how gut microbial communities are structured in a population of North American moose (Alces alces). We identify key microbial interspecific associations within the moose gut and quantify how important they are relative to key host characteristics, such as body condition, for predicting microbial community composition.3. We sampled gut microbial communities from 55 moose in a population experiencing decline due to a myriad of factors, including pathogens and malnutrition. We examined microbial community dynamics in this population utilizing novel graphical network models that can explicitly incorporate spatial information.\ 4. We found that interspecific associations were the most important mechanism structuring gut microbial communities in moose and detected both positive and negative associations. Models only accounting for associations between microbes had higher predictive value compared to models including moose sex, evidence of previous pathogen exposure, or body condition. Adding spatial information on moose location further strengthened our model and allowed us to predict microbe occurrences with ~90% accuracy. 5. Collectively, our results suggest that microbial interspecific associations coupled with host spatial proximity are vital in shaping infra communities in a large herbivore. In this case, previous pathogen exposure and moose body condition were not as important in predicting gut microbial community composition. The approach applied here can be used to quantify interspecific associations and gain a more nuanced understanding of the spatial and host factors shaping microbial communities in non-model hosts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.