The role of anandamide in the development of inflammatory hyperalgesia and visceral hyperreflexia was studied in the rat urinary bladder. Animals were given intraperitoneal cyclophosphamide injection, which evokes painful hemorrhagic cystitis accompanied by increased bladder reflex activity. These results suggest that anandamide, through activating TRPV1, contributes to the development of hyperreflexia and hyperalgesia during cystitis.
Our data demonstrate that transient receptor potential vanilloid subfamily 1 is essential for the generation of noxious bladder input and bladder overactivity associated with cystitis.
Previous findings show that both the vanilloid receptor 1 and the insulin receptor are expressed on small primary sensory neurons. As insulin evokes activity in second messengers which could induce opening of the vanilloid receptor 1, we examined, by using the cobalt-uptake technique, whether or not insulin can activate cultured rat primary sensory neurons through activating the vanilloid receptor 1. Capsaicin (50, 100 and 500 nm) induced concentration-dependent labelling in primary sensory neurons. Preincubation of cells in insulin (10 micromoles) for 10 min followed by a 2-min wash did not produce significant change in the capsaicin-induced labelling. Coapplication of insulin (10 micromoles) with capsaicin, however, potentiated the 50 and 100 nm capsaicin-evoked staining. Insulin itself also produced cobalt labelling in a concentration-dependent manner. The size-frequency distributions of neurons showing capsaicin- or insulin-induced cobalt accumulation were similar. The insulin-induced cobalt labelling was significantly reduced by the tyrosine kinase inhibitor, tyrphostin AG1024, the vanilloid receptor 1 antagonists, ruthenium red and capsazepine, the protein kinase inhibitor, staurosporine and the phospholipase C inhibitor neomycin. Double immunostaining of cultured primary sensory neurons and sections from dorsal root ganglia revealed that about one-third of the cells coexpress the insulin receptor and vanilloid receptor 1. These findings suggest that insulin activates a subpopulation of primary sensory neurons, probably through phosphorylation- and/or phosphatidylinositol(4,5)biphosphate hydrolysis-evoked activation of the vanilloid receptor 1. Although the insulin-induced activation of vanilloid receptor 1 seems to be a short-lived effect in vitro, in vivo it might play a role in the development of burning pain sensation in hyperinsulinism.
TRPV1 receptors expressed by human urothelial cells respond to capsaicin and thermal stimuli. Capsaicin evoked release of adenosine triphosphate suggests that human urothelial TRPV1 is involved in the afferent branch of the micturition reflex. Inflammatory mediators decrease the TRPV1 thermal threshold of activation to body temperature and increase its expression. This finding may be relevant for symptoms associated with cystitis.
GRC-6211 counteracts the bladder hyperactivity and noxious input induced by cystitis. At high doses it suppresses normal bladder activity by a TRPV1 dependent mechanism. TRPV1 antagonists might be useful for cystitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.