While there have been many solutions proposed for storing and analyzing large volumes of data, all of these solutions have limited support for collaborative data analytics, especially given the many individuals and teams are simultaneously analyzing, modifying and exchanging datasets, employing a number of heterogeneous tools or languages for data analysis, and writing scripts to clean, preprocess, or query data. We demonstrate DataHub, a unified platform with the ability to load, store, query, collaboratively analyze, interactively visualize, interface with external applications, and share datasets. We will demonstrate the following aspects of the DataHub platform: (a) flexible data storage, sharing, and native versioning capabilities: multiple conference attendees can concurrently update the database and browse the different versions and inspect conflicts; (b) an app ecosystem that hosts apps for various dataprocessing activities: conference attendees will be able to effortlessly ingest, query, and visualize data using our existing apps; (c) thrift-based data serialization permits data analysis in any combination of 20+ languages, with DataHub as the common data store: conference attendees will be able to analyze datasets in R, Python, and Matlab, while the inputs and the results are still stored in DataHub. In particular, conference attendees will be able to use the DataHub notebook -an IPython-based notebook for analyzing data and storing the results of data analysis.
Creating a schedule for a large multi-track conference requires considering the preferences and constraints of organizers, authors, and attendees. Traditionally, a few dedicated organizers manage the size and complexity of the schedule with limited information and coverage. Cobi presents an alternative approach to conference scheduling by engaging the entire community to take active roles in the planning process. It consists of a collection of crowdsourcing applications that elicit preferences and constraints from the community, and software that enable organizers and other community members to take informed actions based on collected information.
No abstract
Constructing a good conference schedule for a large multi-track conference needs to take into account the preferences and constraints of organizers, authors, and attendees. Creating a schedule which has fewer conflicts for authors and attendees, and thematically coherent sessions is a challenging task. Cobi introduced an alternative approach to conference scheduling by engaging the community to play an active role in the planning process. The current Cobi pipeline consists of committee-sourcing and author-sourcing to plan a conference schedule. We further explore the design space of community-sourcing by introducing attendee-sourcing -- a process that collects input from conference attendees and encodes them as preferences and constraints for creating sessions and schedule. For CHI 2014, a large multi-track conference in human-computer interaction with more than 3,000 attendees and 1,000 authors, we collected attendees’ preferences by making available all the accepted papers at the conference on a paper recommendation tool we built called Confer, for a period of 45 days before announcing the conference program (sessions and schedule). We compare the preferences marked on Confer with the preferences collected from Cobi’s author-sourcing approach. We show that attendee-sourcing can provide insights beyond what can be discovered by author-sourcing. For CHI 2014, the results show value in the method and attendees’ participation. It produces data that provides more alternatives in scheduling and complements data collected from other methods for creating coherent sessions and reducing conflicts.
In this review paper to analysis of the structural wood -I joist section also determine the bearing capacity of I -Joist section. In a circular holes in the webs of wood I -Joists for the remediation techniques used for evaluation. In this review study also investigation of elastic tensional Buckling capacity of wood I -Joists. I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.