MRSI has shown potential in the diagnosis and prognosis of glioblastoma multiforme (GBM) brain tumors, but its use is limited by difficult data interpretation. When the analyzed MRSI data present more than two tissue patterns, conventional non-negative matrix factorization (NMF) implementation may lead to a non-robust estimation. The aim of this article is to introduce an effective approach for the differentiation of GBM tissue patterns using MRSI data. A hierarchical non-negative matrix factorization (hNMF) method that can blindly separate the most important spectral sources in short-TE ¹H MRSI data is proposed. This algorithm consists of several levels of NMF, where only two tissue patterns are computed at each level. The method is demonstrated on both simulated and in vivo short-TE ¹H MRSI data in patients with GBM. For the in vivo study, the accuracy of the recovered spectral sources was validated using expert knowledge. Results show that hNMF is able to accurately estimate the three tissue patterns present in the tumoral and peritumoral area of a GBM, i.e. normal, tumor and necrosis, thus providing additional useful information that can help in the diagnosis of GBM. Moreover, the hNMF results can be displayed as easily interpretable maps showing the contribution of each tissue pattern to each voxel.
In this study non-negative matrix factorization (NMF) was hierarchically applied to simulated and in vivo three-dimensional 3 T MRSI data of the prostate to extract patterns for tumour and benign tissue and to visualize their spatial distribution. Our studies show that the hierarchical scheme provides more reliable tissue patterns than those obtained by performing only one NMF level. We compared the performance of three different NMF implementations in terms of pattern detection accuracy and efficiency when embedded into the same kind of hierarchical scheme. The simulation and in vivo results show that the three implementations perform similarly, although one of them is more robust and better pinpoints the most aggressive tumour voxel(s) in the dataset. Furthermore, they are able to detect tumour and benign tissue patterns even in spectra with lipid artefacts. Copyright © 2016 John Wiley & Sons, Ltd.
MRSI provides MR spectra from multiple adjacent voxels within a body volume represented as a two- or three-dimensional matrix, allowing the measurement of the distribution of metabolites over this volume. The spectra of these voxels are usually analyzed one by one, without exploiting their spatial context. In this article, we present an advanced metabolite quantification method for MRSI data, in which the available spatial information is considered. A nonlinear least-squares algorithm is proposed in which prior knowledge is included in the form of proximity constraints on the spectral parameters within a grid and optimized starting values. A penalty term that promotes a spatially smooth spectral parameter map is added to the fitting algorithm. This method is adaptive, in the sense that several sweeps through the grid are performed and each solution may tune some hyperparameters at run-time. Simulation studies of MRSI data showed significantly improved metabolite estimates after the inclusion of spatial information. Improved metabolite maps were also demonstrated by applying the method to in vivo MRSI data. Overlapping peaks or peaks of compounds present at low concentration can be better quantified with the proposed method than with single-voxel approaches. The new approach compares favorably against the multivoxel approach embedded in the well-known quantification software LCModel.
In this letter a novel approach to create nosologic images of the brain using magnetic resonance spectroscopic imaging (MRSI) data in an unsupervised way is presented. Different tissue patterns are identified from the MRSI data using nonnegative matrix factorization and are then coded as different primary colors (i.e. red, green, and blue) in an RGB image, so that mixed tissue regions are automatically visualized as mixtures of primary colors. The approach is useful in assisting glioma diagnosis, where several tissue patterns such as normal, tumor, and necrotic tissue can be present in the same voxel/spectrum. Error-maps based on linear least squares estimation are computed for each nosologic image to provide additional reliability information, which may help clinicians in decision making. Tests on in vivo MRSI data show the potential of this new approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.