The present paper deals with the existence and multiplicity of solutions for a class of fractional p(x, .)-Laplacian problems with the nonlocal Dirichlet boundary data, where the nonlinearity is superlinear but does not satisfy the usual Ambrosetti-Rabinowitz condition. To overcome the difficulty that the Palais-Smale sequences of the Euler-Lagrange functional may be unbounded, we consider the Cerami sequences. The main results are established by means of mountain pass theorem and Fountain theorem with Cerami condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.