Amyotrophic Lateral Sclerosis (ALS) is a devastating disease and the most common neurodegenerative disorder of young adults. ALS patients present a rapidly progressive motor weakness. This usually leads to death in a few years by respiratory failure. The correct prediction of respiratory insufficiency is thus key for patient management. In this context, we propose an innovative approach for prognostic prediction based on patient snapshots and time windows. We first cluster temporally-related tests to obtain snapshots of the patient's condition at a given time (patient snapshots). Then we use the snapshots to predict the probability of an ALS patient to require assisted ventilation after k days from the time of clinical evaluation (time window). This probability is based on the patient's current condition, evaluated using clinical features, including functional impairment assessments and a complete set of respiratory tests. The prognostic models include three temporal windows allowing to perform short, medium and long term prognosis regarding progression to assisted ventilation. Experimental results show an area under the receiver operating characteristics curve (AUC) in the test set of approximately 79% for time windows of 90, 180 and 365 days. Creating patient snapshots using hierarchical clustering with constraints outperforms the state of the art, and the proposed prognostic model becomes the first non population-based approach for prognostic prediction in ALS. The results are promising and should enhance the current clinical practice, largely supported by non-standardized tests and clinicians' experience.
Human Activity Recognition (HAR) has been studied extensively, yet current approaches are not capable of generalizing across different domains (i.e., subjects, devices, or datasets) with acceptable performance. This lack of generalization hinders the applicability of these models in real-world environments. As deep neural networks are becoming increasingly popular in recent work, there is a need for an explicit comparison between handcrafted and deep representations in Out-of-Distribution (OOD) settings. This paper compares both approaches in multiple domains using homogenized public datasets. First, we compare several metrics to validate three different OOD settings. In our main experiments, we then verify that even though deep learning initially outperforms models with handcrafted features, the situation is reversed as the distance from the training distribution increases. These findings support the hypothesis that handcrafted features may generalize better across specific domains.
SummaryThe constant drive towards a more personalized medicine led to an increasing interest in temporal gene expression analyzes. It is now broadly accepted that considering a temporal perpective represents a great advantage to better understand disease progression and treatment results at a molecular level. In this context, biclustering algorithms emerged as an important tool to discover local expression patterns in biomedical applications, and CCC-Biclustering arose as an efficient algorithm relying on the temporal nature of data to identify all maximal temporal patterns in gene expression time series. In this work, CCCBiclustering was integrated in new biclustering-based classifiers for prognostic prediction. As case study we analyzed multiple gene expression time series in order to classify the response of Multiple Sclerosis patients to the standard treatment with Interferon-β, to which nearly half of the patients reveal a negative response. In this scenario, using an effective predictive model of a patient's response would avoid useless and possibly harmful therapies for the non-responder group. The results revealed interesting potentialities to be further explored in classification problems involving other (clinical) time series.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.