During the last years a wide range of algorithms and devices have been made available to easily acquire range images. The increasing abundance of depth data boosts the need for reliable and unsupervised analysis techniques, spanning from part registration to automated segmentation. In this context, we focus on the recognition of known objects in cluttered and incomplete 3D scans. Locating and fitting a model to a scene are very important tasks in many scenarios such as industrial inspection, scene understanding, medical imaging and even gaming. For this reason, these problems have been addressed extensively in the literature. Several of the proposed methods adopt local descriptor-based approaches, while a number of hurdles still hinder the use of global techniques. In this paper we offer a different perspective on the topic: We adopt an evolutionary selection algorithm that seeks global agreement among surface points, while operating at a local level. The approach effectively extends the scope of local descriptors by actively selecting correspondences that satisfy global consistency constraints, allowing us to attack a more challenging scenario where model and scene have different, unknown scales. This leads to a novel and very effective pipeline for 3D object recognition, which is validated with an extensive set of experiments
Surface registration is a fundamental step in the reconstruction of three-dimensional objects. While there are several fast and reliable methods to align two surfaces, the tools available to align multiple surfaces are relatively limited. In this paper we propose a novel multiview registration algorithm that projects several pairwise alignments onto a common reference frame. The projection is performed by representing the motions as dual quaternions, an algebraic structure that is related to the group of 3D rigid transformations, and by performing a diffusion along the graph of adjacent (i.e., pairwise alignable) views. The approach allows for a completely generic topology with which the pairwise motions are diffused. An extensive set of experiments shows that the proposed approach is both orders of magnitude faster than the state of the art, and more robust to extreme positional noise and outliers. The dramatic speedup of the approach allows it to be alternated with pairwise alignment resulting in a smoother energy profile, reducing the risk of getting stuck at local minima.
We consider the problem of minimum distortion intrinsic correspondence between deformable shapes, many useful formulations of which give rise to the NP-hard quadratic assignment problem (QAP). Previous attempts to use the spectral relaxation have had limited success due to the lack of sparsity of the obtained "fuzzy" solution. In this paper, we adopt the recently introduced alternative L 1 relaxation of the QAP based on the principles of game theory. We relate it to the Gromov and Lipschitz metrics between metric spaces and demonstrate on state-of-the-art benchmarks that the proposed approach is capable of finding very accurate sparse correspondences between deformable shapes.
No abstract
Over the last decades fiducial markers have provided widely adopted tools to add reliable model-based features into an otherwise general scene. Given their central role in many computer vision tasks, countless different solutions have been proposed in the literature. Some designs are focused on the accuracy of the recovered camera pose with respect to the tag; some other concentrate on reaching high detection speed or on recognizing a large number of distinct markers in the scene. In such a crowded area both the researcher and the practitioner are licensed to wonder if there is any need to introduce yet another approach. Nevertheless, with this paper, we would like to present a general purpose fiducial marker system that can be deemed to add some valuable features to the pack. Specifically, by exploiting the projective properties of a circular set of sizeable dots, we propose a detection algorithm that is highly accurate. Further, applying a dot pattern scheme derived from errorcorrecting codes, allows for robustness with respect to very large occlusions. In addition, the design of the marker itself is flexible enough to accommodate different requirements in terms of pose accuracy and number of patterns. The overall performance of the marker system is evaluated in an extensive experimental section, where a comparison with a wellknown baseline technique is presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.